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Transient growth in driven contact lines
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Abstract

The problem of transient growth in the distortion of driven contact lines has recently sparked a controversy as to whether this
mechanism can provide an alternative route to pattern formation in the absence of linear instability. To resolve the disagreement
between previous studies we conduct a generalized linear stability analysis of different lubrication models of gravity-driven
spreading and compare our results with those based on direct numerical simulations. We find that linear and non-linear theory
are in reasonable qualitative agreement and show that the quantitative discrepancies in the predicted transient growth are caused
by the differences in: (1) the choice of initial disturbances and (2) the definition of the maximal transient amplification used in
different studies. We further show by comparing the predictions of the precursor and the slip model that the latter substantially
underestimates transient growth by neglecting the disturbances in the slip parameter.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

The dynamics of gravitationally driven contact
ines have received a lot of attention over the past two
ecades[1–5]. More recently attention has shifted to
e-examination of the validity of the linear stability
nalysis which underlies most theoretical studies,
rompted by a paper due to Bertozzi and Brenner[6]
ho pointed out that existing experimental data of
e Bruyn[4] appear to suggest that the liquid films
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spreading on solid surfaces at low angles of inclina
could undergo a contact line instability where
conventional hydrodynamic linear stability analy
predicted stable evolution. A similar inconsiste
has been pointed out by M̈unch and Wagner[7] who
analyzed the data of Jarrett and de Bruyn[5].

Strong transient growth of spontaneous dis
bances was proposed[6] as the mechanism f
instability in that regime. A similar mechanism
believed to be responsible for destabilization
laminar high-Reynolds number shear flows[8,9].
Since low-Reynolds number coating flows also h
strong shear, it is natural to expect somewhat sim
dynamics (in fact, transient growth was also fo
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in thermocapillary-driven films[10,11]). Shear of the
base flow is an essential ingredient leading to transient
growth of disturbances, as it is partially responsible for
making the evolution operator of the linearized system
strongly non-normal, with many nearly degenerate
eigenfunctions (non-uniformity in the thickness of
the film is the other essential ingredient[10]). The
connection between non-normality and transient
growth is very easy to understand by recalling the
fact that the general solution of a linear differential
equation with a degenerate characteristic polynomial
is given in terms of a linear superposition of products
of powers and exponentials, so that even in a linearly
stable system asymptotic exponential decay can be
preceded by transient algebraic growth. As a result,
linear stability becomes a poor predictor of short-time
dynamics, prompting the need for ageneralizedlinear
stability analysis[12] based on detailed study of
transients.

In order for the transient growth mechanism to
destabilize a linearly stable (transversely uniform)
base state and produce an observable distortion of
the contact line, two conditions have to be met. First,
transient growth has to occur for disturbances with
finite transverse wave numbers (zero wave number
disturbances do not lead to distortion of the contact
line and hence will not be observed experimentally).
Second, transient growth has to be strong enough to
amplify typical spontaneous disturbances sufficiently
for non-linear terms to become important (otherwise,
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Section6 by discussing the origin of the differences in
predictions of various theoretical analyses and suggest
directions for further experimental studies of transient
growth.

2. Lubrication models

In the following we will consider thin liquid films
spreading on an inclined solid plane surface under the
action of gravity. We will orient our coordinate system
such that thex axis points in the direction up the plane
(so that the film flows in the negativex direction), the
y direction is in the plane transverse to the flow and
z is perpendicular to the plane. In the lubrication ap-
proximation the evolution of the film in theprecursor
model[6,13,14]is described in terms of the fourth or-
der non-linear partial differential equation (PDE) for
the non-dimensional film thicknessh(x, y, t):

ht + (h3)x + ∇[h3(∇∇2h−D∇h)] = 0, (1)

whereD(θ) = (3Ca)1/3 cot(θ), Ca= µvc/σ is the cap-
illary number andθ is the inclination angle (from
horizontal) of the plane. Furthermore,µ, ρ, σ, vc =
ρgh2

c sinθ/3µ andhc are, respectively, the viscosity,
density, surface tension, the characteristic speed and
the characteristic thickness of the spreading film. The
corresponding length scales arehc in the z direction,
lc = (3Ca)−1/3hc in thexandydirections, and the time
s iest
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c
p
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h
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he disturbances will eventually decay as predicte
he linear theory). However, so far no experime
nvestigations of this phenomenon have been repo
hile the existing theoretical studies[6,13–15] pro-
uce rather contradicting results: predicted trans
mplification at finite wave numbers goes as
s a factor of five[15] and as high as a factor
00 [6], a difference of more than two orders
agnitude.
The paper is organized as follows: we first rev

he lubrication models of thin film dynamics and
esults of linear stability analysis in Section2. Section

contrasts different ways of describing and qua
ying transient dynamics. The results of general
inear stability analysis of the problem are presen
n Sections4 and 5 which treat, respectively, th
ransient dynamics of disturbances initially localiz
ehind and ahead of the contact line. We conclud
cale islc/vc. In the constant flux case, which is eas
o analyze,(1) has to be solved subject to bound
onditionsh = b, hx = hxxx = 0 for x → −∞ (flat
recursor film ahead) andh = 1, hx = hxxx = 0 for
→ ∞ (flat tail behind the contact line). Respective

heslip model[3,7,15]leads to a PDE

t + (h3 + αh)x + ∇[(h3 + αh)(∇∇2h−D∇h)] = 0,

(2)

hereα is a phenomenological slip coefficient (som
imes defined as the square of the slip lengthhs �
). The corresponding constant flux boundary co

ions are|∇h| = c (constant slope at the contact l
hereh = 0) andh = 1, hx = hxxx = 0 for x → ∞

flat tail).
For the stated boundary conditions both models

it a traveling wave solutionh(x, y, t) = h0(x+ ut)
escribing a transversely uniform spreading fi
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Fig. 1. Asymptotic film thickness profiles produced by the two models forb = α = 0.01 and (a)D = 0 (90◦ inclination angle) or (b)D = 5
(10◦ inclination angle). The contact angle in the slip model is chosen to obtain the maximal thickness equal to that produced by the precursor
model: (a)c = 1.236 and (b)c = 1.303.

Substitutingh0 into (1) and integrating once yields

h′′′
0 = (h0 − 1)(h0 − b)(h0 + 1 + b)

h3
0

+Dh′
0 (3)

and the propagation speedu = 1 + b+ b2. Similarly,
the slip model yields

h′′′
0 = h2

0 − 1

h2
0 + α

+Dh′
0 (4)

with u = 1 + α. It is easy to see that these two
equations coincide in the limitα, b → 0. Furthermore,
for small enoughb andα the numerically computed
profiles are virtually indistinguishable with appropriate
choice of parameters (seeFig. 1).

The stability of the asymptotic (traveling wave)
state is determined by considering perturbed solutions
h(x, y, t) = h0(x+ ut) + g(x+ ut, t)eiqy, which upon
substitution into either(1) or (2)yield a linear evolution
equation for the disturbanceg(x, t),

gt = L(q)g, (5)

withL(q) a non-normal fourth order differential opera-
tor. (Explicit expressions forL along with the boundary
conditions ong are given in[6] for the precursor and
[15] for the slip model.) The leading eigenvalueβ0 of
this operator for smallq can be found analytically us-
ing long wave analysis. As shown in, e.g., Refs.[6,16]
t
a
t

for the precursor model

β0 = q2
∫ ∞

−∞
(h0−1)(h0−b)(h0+1+b)

1 − b
dx+O(q4).

(6)

Respectively, the slip model(2) yields

β0 = q2
∫ ∞

0
h0(h2

0 − 1)dx+O(q4). (7)

The last expression was originally derived in[7] with
a different prefactor due to a different choice of non-
dimensionalization. A quick comparison of(6) and (7)
shows that good agreement between the growth rates
predicted by the two models is expected for smallband
α because, as we have already pointed out, in that limit
the corresponding asymptotic state profiles are virtu-
ally identical. These expressions show that the asymp-
totic film profile becomes unstable to long wave length
disturbances in the presence of a pronounced capillary
ridge, e.g., for large inclination angles (as inFig. 1a).
Smaller inclination angles produce smoother film pro-
files (Fig. 1b) which are stable with respect to long
wave length disturbances.

For larger values ofq the leading eigenvalue,
along with the rest of the spectrum, can be computed
numerically. The procedure is rather standard[15,17]
and hence will not be described here. However, for the
following it will be important to note that the evolution
operator is discretized on a finite domain of overall
l at
x l
o th
he corresponding left and right eigenfunctions ofL(0)
re given byf0(x) = const. andg0(x) = h′

0(x). Using
his fact the following expression has been derived[6]
engthl in thexdirection. Taking the contact line to be
= 0, this corresponds to 0< x < l for the slip mode
r −lp < x < l− lp for the precursor model, wi
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Fig. 2. The leading eigenvalueβ0 as a function of the transverse wave numberq for (a)D = 0 and (b)D = 5. The other parameters are as in
Fig. 1. The dotted curves correspond to the asymptotic result(7).

lp the width of the numerical precursor film. Unless
stated otherwise, we takel = 20 andlp = 0.16 in the
remainder of the paper.Fig. 2compares the asymptotic
result(7) with numerically computed values, showing
excellent agreement for smallq. Fig. 2b also confirms
that at small inclination angles the asymptotic stateh0
is linearly stable for all wave numbers. Interestingly
enough, the predictions of the two models regarding
the wave number of the fastest growing disturbance
in the unstable case (Fig. 2a) agree very well, while
the corresponding growth rates differ by about 7%. In
comparison, the difference at smallq is below 1%.

3. Transient growth

For strongly non-normal evolution operators the
leading eigenvalues (such as those shown inFig. 2)
provide a poor description of the short-term dynamics.
We therefore turn to the generalized stability analysis,
which takes into account the full spectrum of eigen-
modes. As pointed out previously, even in a linearly
stable system (such as a film spreading down a slope
at small angle of inclination) disturbances can undergo
transient growth before asymptotic decay eventually
sets in. The strength of transient growth can be
characterized by computing the norm of the amplified
disturbanceδh(x, y, t) and comparing it with the norm
of the initial disturbance, sayδh(x, y,0) = g(x,0)eiqy,
giving the following measure:

γ

where‖ ‖p denotes the conventionalLp-norm. Such
a definition withp = ∞ was used in several studies
based on the precursor model. For instance, Bertozzi
and Brenner[6] used initial disturbances

g(x,0) = s

(
1 − (x− xc)2

w2

)2

sin(kx),

xc − w < x < xc + w (9)

with a fixed amplitudes, widthw = 20 and modulation
wave numberk = 1/3 in thex direction[18]. Kondic
and Bertozzi[13] chose a family of functions

g(x,0) = −s exp

[
−4 ln 2

(x− xc)2

w2

]
(10)

with adjustable parameterss andw. Finally, Ye and
Chang[14] used the essential eigenfunctions ofL(q)
in place of the initial disturbances. Essential eigenfunc-
tions are plane waves

g(x,0) = seikx (11)

ahead of the contact line and decay exponentially fast
behind it. Although easy to compute, the definition
(8) provides somewhat limited information, since the
amount of transient amplification may (and in fact
does) depend quite sensitively on the choice of initial
disturbancesg(x,0). One should therefore regard(8)as
a lower bound on transient amplification. Yet all three
studies find strong transient growth that can easily am-
p de
o ient
a alue
p(q, t) = ‖δh(x, y, t)‖p
‖δh(x, y,0)‖p = ‖δh(x, y, t)‖p

‖g(x,0)‖p , (8)

lify initial disturbances by two orders of magnitu
r more. Furthermore, in all of these studies trans
mplification achieves its maximum at a nonzero v
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of the transverse wave numberq, suggesting that tran-
sient amplification can, indeed, provide an alternative
mechanism for the contact line instability.

A different approach is to define transient amplifica-
tion as a maximum of(8)over all initial conditions. Al-
though one clearly cannot sample all initial conditions,
in the linear theory whereδh(x, y, t) = g(x, t)eiqy, the
resulting quantity can be related to the matrix norm of
the evolution operator[9]

γp(q, t) = sup
g(x,0)

‖g(x, t)‖p
‖g(x,0)‖p =

∥∥∥eL(q)t
∥∥∥
p
, (12)

which can be computed numerically using the standard
technique of spectral decomposition. This latter defi-
nition, with p = 2, was used by Davis and Troian in
the most recent study[15] based on the slip model.
The authors found transient amplification to be weak
(barely more than an order of magnitude) and peak at
zero wave number, contrary to the results of previous
studies, and therefore incapable of producing a signif-
icant distortion of the contact line.

In the unstable band transient growth is followed by
exponential growth, rather than decay, so(12)produces
a diverging result. Factoring out the exponential growth
as in Refs.[6,10], we can generalize(12) to give an
expression

γp(q, t) = sup
g(x,0)

‖g(x, t)‖p
‖g(x,0)‖p e−β0(q)t = ‖e[L(q)−β0(q)]t‖p

describing the growth due to transient effects. Initial
disturbances that are amplified the most at a given time
t are called “optimal disturbances” or “optimal inputs”
and can be found via the singular value decomposi-
tion of the evolution operator eL(q)t [12]. We will often
use the maximal transient amplification for all times
γp(q) = maxt γp(q, t) instead of(12) and (13).

4. Disturbances behind the contact line

We have computed transient amplification numeri-
cally from(12) and (13)for both the precursor and the
slip model using different norms. With few exceptions
the results are qualitatively similar for differentp, so
we will concentrate primarily on the∞-norm consid-
ered in the majority of studies. Transient amplification
as a function of the wave number is shown inFig. 3and
provides information complementary to the dispersion
relationβ0(q) shown inFig. 2. In the slip model we find
that transient amplification increases with decreasing
q, reaching a maximum of a few tens atq = 0, with a
rather weak dependence on the parameterD describing
the inclination angle of the plane.

Our results for the slip model are qualitatively and
quantitatively similar to those of Davis and Troian
[15] who used similar parameters but a different norm,
p = 2. Direct comparison of magnitudes of transient
amplification computed in different studies, however,
should be made with care: the magnitude of transient
a ice

F nsvers n
( are asFig
(13)

ig. 3. Maximal transient amplificationγ∞ as a function of the tra
a) islp = 0.16 and in (b) is as indicated. The other parameters
mplification depends both on its definition (the cho

e wave numberq for (a)D = 0 and (b)D = 5. The precursor width i
in. 1. The dotted curve in (b) shows the analytic result(18).
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Fig. 4. Maximal transient amplificationγp atq = 0 as a function of the system sizel for (a)D = 0 and (b)D = 5. The other parameters are as
in Fig. 1. Ai andBi are constants determined from a least squares fit.

of the norm) and on the sizel of the computational do-
main on which the evolution operator is discretized.
For instance, our calculations for differentl presented
in Fig. 4 show thatγ1 ≈ const., whileγ2 ∝ l1/2 and
γ∞ ∝ l, when computed atq = 0. This dependence can
be understood by considering the structure of the lead-
ing eigenfunctiong0 and its adjointf0.

Numerical calculations show thatγp, for anyp and
q = 0, achieves a maximum fort → ∞ (this is a global
maximum for the slip model, but may be a local max-
imum for the precursor model as we will see later).
Using the spectral decomposition of the matrix expo-
nential we obtain

eL(0)t =
∑
n

gne
βn(0)tf †n → g0f

†
0 , t → ∞, (14)

as β0(0) = 0 is the only non-negative eigenvalue.
Hence, the maximal transient amplification is achieved
for the optimal initial disturbances equal to multiples
of f0. The evolution amplifies these disturbances and
transforms them into multiples of the leading eigen-
functiong0 ast → ∞. From(12) and (14)we have

γp(0) = ‖g0f
†
0f0‖p

‖f0‖p = ‖g0‖p‖f0‖2
2

‖f0‖p . (15)

Sinceg0(x) = h′
0(x) has an essentially finite support (it

is exponentially small outside of the capillary shock re-
gion), we have‖g0‖p = const. (with a different const.
for differentp) for l greater than the width of the cap-
i

‖

which immediately leads toγp(0) ∝ l1−1/p. Therefore,
all γp with p > 1 diverge in the limitl → ∞, so that,
at least in principle, one can construct an initial dis-
turbance which will produce arbitrarily large transient
growth.

Restricting the size of the computational domain
is equivalent to imposing an initial disturbance of fi-
nite spatial extent on an unbounded film. Initial dis-
turbances with larger spatial extent are closer to the
optimal disturbancef0 = const. and thus are ampli-
fied stronger. Once the identification of the computa-
tional domain sizel with the widthw of the initial
disturbance is made, the blow-up ofγp with l (or w)
can be readily understood. For a film of infinite spatial
extent the optimal initial disturbanceg(x,0) = δh f0,
with δh = const.� 1, corresponds to a change in the
thickness of the film’s flat tail,h0 → h0 + δh. From
(1) and (2)we see that the contact lines of the undis-
turbed and the disturbed film will move with con-
stant but different speeds, which for small enough
b andα are given byu ≈ h2

0(∞) = 1 andu+ δu ≈
(h0(∞) + δh)2 ≈ 1 + 2δh, respectively, leading to a
linear growth in the separationδx = δu t ≈ 2δh t. If
such uniform initial disturbance extends only a finite
(but large compared with the characteristic width of
the capillary shockls) distancew from the contact line,
the separation in the position of the two contact lines
will grow linearly for a finite timet∗, while the dis-
turbance is advected toward the contact line and then
s ∗ ∗
b vol-
u e
d

llary shock. Furthermore,f0(x) = const., so

f0‖pp =
∫

|f0(x)|p dx ∝ l, (16)
top. This timet and the maximal separationδx can
e computed using volume conservation: the initial
me differencewδh has to be equal to the final volum
ifferenceh0(∞)δx∗ = δx∗, yielding δx∗ = wδh and
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t∗ = δx∗/δu ≈ w/2. We therefore obtain

γp(0) ≈ ‖g(x, t∗)‖p
‖g(x,0)‖p

≈
(∫ ∞

0 |g0(x)δx∗|p dx
)1/p

(
∫ w

0 |δh|p dx)1/p
∝ w1−1/p. (17)

For initial disturbances with small (compared with
l−1
s ) but non-zero wave numbers the distortion of the

contact line will experience transient growth until the
transverse modulation in the thickness of the film be-
hind the contact line dies away due to the stabilizing
action of gravity and surface tension. This modula-
tion will decrease exponentially with the time scale
τ(q) = (Dq2 + q4)−1, as can be seen from the evo-
lution Eqs. (1) or (2) linearized about the flat pro-
file h(x, y) = 1. Transient amplification factor can be
estimated using the maximal distortion of the con-
tact line. For instance, takingp = ∞ and assuming
maxx |g0(x)| ≈ c, the slope at the contact line, we ob-
tain

γ∞(q) ≈ 2c
∫ t∗

0
e−t/τ(q) dt = 2cτ(q)(1 − e−w/(2τ(q)))

= cw− cDw2

4
q2 +O(q4). (18)

Given the crudeness of this estimate, it is in reason-
able agreement with our numerical result forD = 5,
asFig. 3b shows, even for relatively largeq. Forq = 0
t
c atial

extent of the disturbance. However, zero wave num-
ber disturbances do not lead to distortion of the contact
line. For any non-zeroq there is a finite upper bound
independent ofw,

γ∞(q) � 2cτ(q) = 2c(Dq2 + q4)−1, (19)

which is a more practically important result.

5. Disturbances ahead of the contact line

The preceding analysis applies equally to the slip
and the precursor model, assuming that the initial
disturbances are localized behind the contact line.
It should come as no surprise then that the precur-
sor model produces transient amplification essentially
identical to that of the slip model when the numeri-
cal precursor is very narrow (Fig. 3). For intermediate
values oflp we again find good agreement at smallq,
while at largerq there is a significant difference:γ∞(q)
levels off for the precursor model, with the height of the
plateau which increases withlp, while the slip model
predicts a monotonic decay. This difference can be un-
derstood by looking at the time dependence ofγ∞(q, t).
Fig. 5a shows that while the slip model produces a
curve with a single maximum, in the precursor model
transient amplification can peak twice. The first max-
imum is achieved rather quickly (at timet1 ≈ lp in-
dependent ofq, asFigs. 5b and 6b show), while the
s t the
s the

F precurs cursor
fi hieved
T e other
ransient amplification(18) grows linearly withw and
an be made arbitrarily large by increasing the sp

ig. 5. (a) Transient amplificationγ∞ atq = 0.36 for the slip and
lm is as indicated. (b) The times at which the maxima inγ∞ are ac
he second maximum disappears at larger wave numbers. Th
econd maximum is achieved much later (at abou
ame timet2 when transient amplification peaks in

or model as a function of time. The width of the numerical pre
as a function of wave number in the precursor model withlp = 0.46.
parameters areD = 5, α = b = 0.01 andc = 1.303.
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Fig. 6. (a) Transient amplificationγ∞ and (b) the time at which the maximum is achieved as a function of the precursor widthlp. We used
a relatively large wave numberq = 0.6 for whichγ∞ has a single maximum. The other parameters areD = 5 andb = 0.01.A is a constant
determined from a least squares fit.

slip model). For relatively small precursor widthlp the
second maximum dominates for smallq and the first
one for largeq, explaining the crossover effect observed
in the precursor model. At largerlp the first maximum
is dominant for allq, so one obtains transient ampli-
fication which is essentially independent of the trans-
verse wave number of the initial disturbance (seeFig.
3b). Furthermore,Fig. 6a shows thatγ∞(q, t1) scales
asl2/3p with the width of the numerical precursor film
(for the relatively small values oflp considered in this
study).

These results can be understood qualitatively by
identifying lp with the spatial extentwp of the initial
disturbance in the physical precursor film extending to
x = −∞. Precursor thickness affects the shape of the
capillary shock. For large inclination angles (Fig. 1a)

the most obvious effect is the change in the thickness
of the capillary ridge, as noted by Bertozzi and Bren-
ner[6]. However, for small inclination angles (Fig. 1b)
the capillary ridge disappears. In this regime it is more
appropriate to consider the effect of the precursor thick-
nessb on the slope of the capillary shock. This depen-
dence (which follows from the non-linear theory) is
shown inFig. 7b. The data points are well fitted by a
curve

max
x
h′

0(x) = A2 + B2(ln b−1)1/3, (20)

which corresponds to the thickness profileh0 ∼
x[ln(x/b)]1/3 near the contact line computed by Dus-
san and Davis[19] and de Gennes[20]. The argument
of Bertozzi and Brenner[6] for the scaling of transient

F imal s ness
T are con
ig. 7. (a) Transient amplificationγ∞ for q = 0.6 and (b) the max
he other parameters areD = 5, b = 0.01 andlp = 0.2.Ai andBi
lope of the capillary shock as a function of the precursor thickb.
stants determined from a least squares fit.
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amplification withb then gives

γ∞(0) ∝ max
x

∂h0(x)

∂b
∝ ∂maxx h′

0(x)

∂b

∝ (ln b−1)−2/3b−1, (21)

in good agreement with our numerical results obtained
for fixed lp (or wp), asFig. 7a shows. Previous stud-
ies mostly found power law scalingγ∞(0) ∝ bχ with
various exponentsχ. For instance, the study of Ye and
Chang claimed the exponent to be−1, although the re-
ported data (Fig. 6b of Ref.[14]) would, in fact, agree
much better with a scaling relation such as(21). The
limited data of Bertozzi and Brenner[6] roughly cor-
responds to the exponent−1. A later study by Kondic
and Bertozzi[13] found the exponent to be closer to
−4/3 for non-infinitesimal disturbances (their distur-
bances were comparable to the precursor thickness it-
self), which can be regarded as a non-linear effect.Fig.
7a also shows that the transient amplification in the pre-
cursor model deviates rather significantly from theb−1

scaling.
Next we turn to the description of time dependence

starting, as in the previous Section, with the caseq = 0.
Once the contact line encounters a region of a locally
thicker/thinner precursor (of widthwp) the capillary
shock cannot adjust to the change in the precursor
thickness instantaneously. Instead the deformation of
the shock will continuously increase (while the contact
l cur-
s om-
p pen

at time t1 = wp/u ≈ lp (recall, u = 1 + b+ b2 ≈ 1
andwp = lp), in agreement with our numerically ob-
tained scaling (Fig. 6b). According to this scenario,
spatially uniform initial disturbances would produce
the largest net amplificationγ∞(0). The optimal ini-
tial disturbanceg(x,0) producing peak transient am-
plification at timet1 can also be found numerically by
computing the singular value decomposition of the evo-
lution operator eL(q)t . The result forq = 0 is shown
in Fig. 8a. Indeed, we findg(x,0) to be nearly con-
stant for−lp < x < 0 (aside from a capillary shock
at x = −lp), which is consistent with our qualitative
description. Most important, this optimal initial distur-
bance is quickly transformed by the evolution operator,
such that at timet1 its shape looks almost identical to
the leading eigenfunctiong0(x) = h′

0(x) near the con-
tact line, asFig. 8a shows. Therefore, the main effect of
disturbances in the precursor thickness is to change the
position of the contact line, not the thickness of the cap-
illary ridge, as suggested by Bertozzi and Brenner[6].

As we increaselp, wider and wider initial distur-
bances are allowed. Simultaneouslyt1 increases, mov-
ing peak transient amplification toward later and later
times, so that, according to the analysis of the previous
section, the optimal initial disturbances approach mul-
tiples of the leading adjoint eigenfunctionf0 = const.
and are transformed by the evolution operator into the
multiples of the leading eigenfunctiong0(x) = h′

0(x),
describing the translation of the contact line. The
d ave
n ent
a eed

F st dist
o

ine moves over the disturbed region of the pre
or), reaching a maximum when the contact line c
letely crosses the disturbed region. This would hap

ig. 8. Optimal initial disturbanceg(x,0) that produces the large
ther parameters areD = 5, b = 0.01 andlp = 1.06.
istortion corresponds to non-zero transverse w
umbers, for which we can invoke the same argum
s before: the contact line will advance with a sp

urbanceg(x, t) at the peak timet1 for (a) q = 0 and (b)q = 0.6. The
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determined by the local thickness of the precursor. The
transverse modulation in the thickness of the precursor
will decrease exponentially with time, just as the mod-
ulation in the film thickness behind the contact line,
but at a much slower rateτ(q) = b−3(Dq2 + q4)−1.
Effectively, for the range of wave lengths of interest
and realistic values ofb, the effect of this decay is
completely negligible, explaining our earlier observa-
tion thatγ∞(q) becomes flat for the range ofq where
the first maximum inγ∞(q, t) dominates (seeFig. 3).
Indeed, a quick comparison ofFig. 8a and b shows that
the shape of the optimal initial disturbance ahead of
the contact line is essentially independent ofq, while
behind the contact lineg(x,0) is sharply reduced for
non-zeroq — the modulation behind the contact line
dies out much quicker and is therefore less capable of
producing large transient growth than the modulation
ahead of the contact line which persists for a long
time.

This picture suggests the following scaling of the
maximal transient amplification

γp(q) ∝ (ln b−1)−2/3b−1w1−1/p
p (22)

for wp large (again compared with the capillary shock
width ls). At small lp(= wp) our numerical computa-
tions also produce a power law scaling forγ∞(q) with
lp (seeFig. 6a), but with exponent 2/3 rather than 1,
as predicted by(22). This disagreement should not be
too alarming — when the peak amplification occurs
a
f w-
e at
l
e ndic
a
T e-
s ount
o ing
l -
t th
o
c s
a

our
r e
o he
d g

[14] show the amount of transient amplification to de-
pend rather strongly on the transverse wave number.
For instance, Ref.[6] producesγ∞(0.6) ≈ 800 com-
pared withγ∞(0) ≈ 200 (forb = 0.001 andD = 5) –
a factor of four difference. It is possible that this differ-
ence is due to the specific choice of initial disturbances
(recall, we computeγp(q, t) as the maximum overall
initial disturbances, while Refs.[6,14]considered only
longitudinally modulated disturbances(9) and (11)).
The calculation of Kondic and Bertozzi[13], on the
other hand, shows very weakq-dependence of transient
amplification for initial disturbances(10) with no lon-
gitudinal modulation. For instance, for a disturbance of
widthwp = 20 they getγ∞(0.5) ≈ 75 compared with
γ∞(0) ≈ 60 (forb = 0.01 andD = 5).

6. Discussion

Summing up, we find that much of the reported
disagreement between the predictions of linear and
non-linear theory regarding transient amplification of
spontaneous disturbances is due to a rather arbitrary
way in which the amplification itself is defined. For
instance, direct comparison requires that the same
norm be used (e.g., studies based on non-linear theory
[6,13] used the∞-norm, while those based on the
linear theory[15] used the 2-norm). Furthermore, the
predictions obtained for particular initial disturbances
[6,13,14] cannot be directly compared with the pre-
d
a lly,
t ces
i has
t class
o

ree-
m ear
t sim-
i non-
l not
q ry.
T ions
o not
b de-
p erse
w dies
u d to
t small timest1 ≈ wp the decomposition(14), which
orms the basis for the scaling, is not yet valid. Ho
ver, we expectγ∞(q) to approach linear scaling

argerwp and eventually diverge forwp → ∞. This
xpectation seems to be supported by the data of Ko
nd Bertozzi (Fig. 3c and especially Fig. 4 of Ref.[13]).
heir scaling at smallwp is also consistent with our r
ult. The data of Ye and Chang who found the am
f transient amplification to increase with decreas

ongitudinal wave numberk of initial plane wave dis
urbances (Fig. 6a of Ref.[14]) are also consistent wi
ur predictions: initial disturbances with smallerk are
loser to the optimal disturbancef0 = const. and thu
re amplified stronger.

Perhaps the only qualitative difference between
esults and those of other studies is theq-dependenc
f transient amplification in the precursor model. T
ata of Bertozzi and Brenner[6] and Ye and Chan
ictions based on the optimal initial disturbances[15],
s the former could be highly non-optimal. Fina

his dependence on the choice of initial disturban
mplies that the size of the computational domain
o be at least as large as the spatial extent of the
f initial disturbances under consideration.

Nevertheless, we find reasonable quantitative ag
ent between the predictions of linear and non-lin

heory based on the precursor model, provided that
lar classes of initial disturbances are used. The
inear effects appear to be relatively mild and do
ualitatively alter the predictions of the linear theo
he only qualitative difference between the predict
f different studies, the origin of which we have
een able to determine conclusively, is the detailed
endence of transient amplification on the transv
ave number of the initial disturbance. Further stu
sing both linear and non-linear theory are neede
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Fig. 9. The maximal slope of the capillary shock (a) as a function of the contact angle forα = 0.01 andD = 5 and (b) as a function of the slip
parameter forc = 1.303 andD = 5.Ai andBi are constants determined from a least squares fit.

determine whether the maximum is indeed achieved at
finite wave numbers and, if yes, why.

We find significant disagreement between the pre-
dictions of the precursor model and the slip model. In a
nutshell, the largest transient amplification in the pre-
cursor model is produced by disturbances localized in
the precursor film due to the extreme sensitivity of the
capillary shock to the microscopic structure of the pre-
cursor. This sensitivity has been artificially eliminated
in the slip model considered by Davis and Troian[15].
In order to incorporate the effect of microscopic struc-
ture of the liquid–solid interaction on the dynamics of
the contact line in the slip model one needs to consider
the response of the capillary shock to: (i) the distur-
bances in the contact angle and (ii) the disturbances in
the slip coefficientα. Only (i) was considered in Ref.
[15]. As is well known[3], the shape of the capillary
ridge depends relatively weakly on the slope parameter
c (also seeFig. 9a). As a result, one should only expect
moderate transient amplification of disturbances in the
contact angle:

γ∞ ∝ ∂maxx h′
0(x)

∂c
∝ c, (23)

in agreement with our analytic result(18) and consis-
tent with the numerical results of Davis and Troian[2].
On the other hand, the dependence on the slip parame-
terα is quite sensitive, just like the dependence on the
parameterb in the precursor model. We find this de-
p t
w x-
p lified

much stronger:

γ∞ ∝ ∂maxx h′
0(x)

∂α
∝ α−1, (24)

i.e., by many orders of magnitude for realistic values of
α. Numerical evidence supporting this conclusion has
been obtained by Hoffmann et al.[21]. Therefore, to
match the predictions of the precursor model, the slip
model has to be reformulated forparametricdistur-
bances. As it stands, the slip model does not adequately
describe transient dynamics.

As we have shown, the linear theory (and hence the
non-linear theory, too) can produce arbitrarily large
transient amplification. For films spreading on a dry
plane strong transient amplification can be obtained
by imposing initial disturbances which correspond to a
very slow transverse modulation of the film thickness
in a wide strip immediately behind the contact line. An
even stronger transient amplification can be produced
for spreading on a prewetted plane, if a similar thick-
ness disturbance is imposed in the precursor film just
ahead of the contact line. Practically achievable tran-
sient amplification is only limited by the width of the
strip and the modulation period, which can be increased
by increasing the system size. Of course, the distur-
bances that are realized in typical (rather than specially
designed) experimental conditions will likely be highly
non–optimal and as a result will be amplified much less
than the optimal ones. On the other hand, transient am-
p mit
o nt),
i ld be
endence to be logarithmic (seeFig. 9b), in agreemen
ith the analytical predictions[7]. We can therefore e
ect disturbances in the slip parameter to be amp
lification should also become very large in the li
f small precursor thickness (or small slip coefficie

n which case even non-optimal disturbances shou
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amplified very strongly leading to breakdown of the lin-
ear stability analysis. The key questions, therefore, are:
(i) to what degree the naturally occurring disturbances
are optimal; (ii) whether they can be considered small,
that is whether the linear or non-linear theory should be
used and (iii) whether the limit of very small precursor
thickness (or slip coefficient) is physical.

A targeted experimental investigation would help
answer these questions. As Garnier et al. have shown
recently[22], desired thickness disturbances can be im-
posed dynamically on the spreading film using the ther-
mocapillary effect. The idea is to use the dependence
of surface tension on the local interfacial temperature
to drive the fluid from warmer to cooler regions, thus
changing the local thickness. The temperature field can
be conveniently controlled optically by illuminating the
film with intensity-modulated visible or infrared radi-
ation. The amount of transient amplification for distur-
bances initially localized behind the contact line can
be determined experimentally by modulating the film
thickness in the transverse direction in a strip of certain
width and studying the resulting distortion of the con-
tact line. Disturbances ahead of the contact line can be
imposed more conveniently via chemical patterning of
the substrate[23] to change the local contact angle/slip
constant for spreading on a dry plane or the precursor
thickness for spreading on a prewetted plane. A sim-
ilar effect can be achieved by etching the surface of
the substrate, imposing microscopic surface roughness
[24].
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