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Abstract

The problem of transient growth in the distortion of driven contact lines has recently sparked a controversy as to whether this
mechanism can provide an alternative route to pattern formation in the absence of linear instability. To resolve the disagreement
between previous studies we conduct a generalized linear stability analysis of different lubrication models of gravity-driven
spreading and compare our results with those based on direct numerical simulations. We find that linear and non-linear theory
are in reasonable qualitative agreement and show that the quantitative discrepancies in the predicted transient growth are cause
by the differences in: (1) the choice of initial disturbances and (2) the definition of the maximal transient amplification used in
different studies. We further show by comparing the predictions of the precursor and the slip model that the latter substantially
underestimates transient growth by neglecting the disturbances in the slip parameter.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction spreading on solid surfaces at low angles of inclination

could undergo a contact line instability where the

The dynamics of gravitationally driven contact
lines have received a lot of attention over the past two
decadeg1-5]. More recently attention has shifted to
re-examination of the validity of the linear stability
analysis which underlies most theoretical studies,
prompted by a paper due to Bertozzi and Brer{6gr
who pointed out that existing experimental data of
de Bruyn[4] appear to suggest that the liquid films
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conventional hydrodynamic linear stability analysis
predicted stable evolution. A similar inconsistency
has been pointed out by ivich and Wagnef7] who
analyzed the data of Jarrett and de Br{yh

Strong transient growth of spontaneous distur-
bances was proposefb] as the mechanism for
instability in that regime. A similar mechanism is
believed to be responsible for destabilization of
laminar high-Reynolds number shear flo\i8,9].
Since low-Reynolds number coating flows also have
strong sheatr, it is natural to expect somewhat similar
dynamics (in fact, transient growth was also found
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in thermocapillary-driven film$10,11). Shear of the Section6 by discussing the origin of the differences in
base flow is an essential ingredient leading to transient predictions of various theoretical analyses and suggest
growth of disturbances, as itis partially responsible for directions for further experimental studies of transient
making the evolution operator of the linearized system growth.

strongly non-normal, with many nearly degenerate

eigenfunctions (non-uniformity in the thickness of

the film is the other essential ingrediefit0]). The 2. Lubrication models

connection between non-normality and transient

growth is very easy to understand by recalling the In the following we will consider thin liquid films
fact that the general solution of a linear differential spreading on an inclined solid plane surface under the
equation with a degenerate characteristic polynomial action of gravity. We will orient our coordinate system
is given in terms of a linear superposition of products such that the axis points in the direction up the plane
of powers and exponentials, so that even in a linearly (so that the film flows in the negativedirection), the
stable system asymptotic exponential decay can bey direction is in the plane transverse to the flow and
preceded by transient algebraic growth. As a result, z is perpendicular to the plane. In the lubrication ap-
linear stability becomes a poor predictor of short-time proximation the evolution of the film in therecursor
dynamics, prompting the need foganeralizedinear model[6,13,14]is described in terms of the fourth or-
stability analysis[12] based on detailed study of der non-linear partial differential equation (PDE) for

transients. the non-dimensional film thickne&sx, y, 1):
In order for the transient growth mechanism to 3 )
destabilize a linearly stable (transversely uniform) %+ (%)< + VIR*(VV?h — DVh)] =0, @

base state and produce an observable distortion of
the contact line, two conditions have to be met. First,
transient growth has to occur for disturbances with
finite transverse wave numbers (zero wave number
disturbances do not lead to distortion of the contact
line and hence will not be observed experimentally).
Second, transient growth has to be strong enough to
amplify typical spontaneous disturbances sufficiently
for non-linear terms to become important (otherwise,
the disturbances will eventually decay as predicted by
the linear theory). However, so far no experimental
investigations of this phenomenon have been reported,
while the existing theoretical studi¢6,13—15] pro-
duce rather contradicting results: predicted transient
amplification at finite wave numbers goes as low
as a factor of five[15] and as high as a factor of  p, + (4% + ah), + V[(h® + ah)(VV?h—DVh)] = 0,
800 [6], a difference of more than two orders of
magnitude. (2)
The paper is organized as follows: we first review wherex is a phenomenological slip coefficient (some-
the lubrication models of thin film dynamics and the times defined as the square of the slip lenfith«
results of linear stability analysis in Secti@nSection 1). The corresponding constant flux boundary condi-
3 contrasts different ways of describing and quanti- tions are|Vh| = ¢ (constant slope at the contact line
fying transient dynamics. The results of generalized whereh =0) andh =1, hy = hy,, = 0 for x — oo
linear stability analysis of the problem are presented (flat tail).
in Sections4 and 5which treat, respectively, the For the stated boundary conditions both models ad-
transient dynamics of disturbances initially localized mit a traveling wave solutiof(x, y, t) = ho(x + ut)
behind and ahead of the contact line. We conclude in describing a transversely uniform spreading film.

whereD(6) = (3Ca)/3 cot), Ca= pv. /o is the cap-
illary number andé is the inclination angle (from
horizontal) of the plane. Furthermorg, p, o, v, =
pghf sing/3u and k. are, respectively, the viscosity,
density, surface tension, the characteristic speed and
the characteristic thickness of the spreading film. The
corresponding length scales drgin the z direction,

I. = (3Ca) 1/3h. in thex andy directions, and the time
scaleid./v.. In the constant flux case, which is easiest
to analyze,(1) has to be solved subject to boundary
conditionsh = b, hy = hy =0 for x > —oo (flat
precursor film ahead) antl = 1, h, = h,,, = 0 for

x — oo (flat tail behind the contact line). Respectively,
theslip model[3,7,15]leads to a PDE
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Fig. 1. Asymptotic film thickness profiles produced by the two model$fera = 0.01 and (a)D = 0 (90 inclination angle) or (b)D =5
(1¢° inclination angle). The contact angle in the slip model is chosen to obtain the maximal thickness equal to that produced by the precursor
model: (a)c = 1.236 and (by = 1.303.

Substitutingzg into (1) and integrating once yields for the precursor model

_ _ ® (ho—1)(ho—b)(ho+1+b)
o — o= Do =b)ho+1+5) 3) bo= qz/ — dx + O(¢%).
0 h3 0 —00 1-b
0
d th ti o= 1+ b + b°. Similarl ©
an € propagation spee . olmilarly, R tively. th I d ield
the slip model yields espectively, the slip mod2) yields
o
21 po=d? [ (i~ 1)ce + O ™
hg = 22—+ Dhj, @) 0
hg+a The last expression was originally derived[#} with

a different prefactor due to a different choice of non-
dimensionalization. A quick comparison @) and (7)
shows that good agreement between the growth rates
predicted by the two models is expected for srhalhd

o because, as we have already pointed out, in that limit
the corresponding asymptotic state profiles are virtu-
ally identical. These expressions show that the asymp-
totic film profile becomes unstable to long wave length
disturbances in the presence of a pronounced capillary
ridge, e.g., for large inclination angles (askig. 1a).
Smaller inclination angles produce smoother film pro-
files (Fig. 1b) which are stable with respect to long
wave length disturbances.

For larger values ofq the leading eigenvalue,
along with the rest of the spectrum, can be computed
numerically. The procedure is rather standgrsl,17]
and hence will not be described here. However, for the
following it will be important to note that the evolution
operator is discretized on a finite domain of overall
lengthl inthexdirection. Taking the contactline to be at
x = 0, this corresponds to 8 x < I for the slip model
or —I, <x <I1—1, for the precursor model, with

with u =1+ «. It is easy to see that these two
equations coincide in the limit, » — 0. Furthermore,
for small enougho and« the numerically computed
profiles are virtually indistinguishable with appropriate
choice of parameters (s&dg. 1).

The stability of the asymptotic (traveling wave)
state is determined by considering perturbed solutions
h(x, v, t) = ho(x + ut) + g(x + ut, t)e'?”, which upon
substitution into eithefl) or (2)yield a linear evolution
equation for the disturbancggx, 1),

g = L(q)g. ©))

with L(g) a non-normal fourth order differential opera-
tor. (Explicit expressions fdr along with the boundary
conditions ong are given in[6] for the precursor and
[15] for the slip model.) The leading eigenvalfg of
this operator for smalj can be found analytically us-
ing long wave analysis. As shown in, e.g., R¢6516]
the corresponding left and right eigenfunctiond.¢®)
are given byfo(x) = const. ango(x) = hy(x). Using
this fact the following expression has been derij@&d
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Fig. 2. The leading eigenvalys) as a function of the transverse wave numdpéor (a) D = 0 and (b)D = 5. The other parameters are as in

Fig. 1 The dotted curves correspond to the asymptotic réglt

I, the width of the numerical precursor film. Unless
stated otherwise, we takke= 20 and/, = 0.16 in the
remainder of the papédfig. 2compares the asymptotic
result(7) with numerically computed values, showing
excellent agreement for smajl Fig. 2b also confirms
that at small inclination angles the asymptotic state

is linearly stable for all wave numbers. Interestingly
enough, the predictions of the two models regarding
the wave number of the fastest growing disturbance
in the unstable casd-ig. 2a) agree very well, while
the corresponding growth rates differ by about 7%. In
comparison, the difference at smalis below 1%.

3. Transient growth

For strongly non-normal evolution operators the
leading eigenvalues (such as those showiritgn 2)
provide a poor description of the short-term dynamics.
We therefore turn to the generalized stability analysis,
which takes into account the full spectrum of eigen-
modes. As pointed out previously, even in a linearly

where|| ||, denotes the conventiondl,-norm. Such

a definition with p = oo was used in several studies
based on the precursor model. For instance, Bertozzi
and Brennef6] used initial disturbances

(x - xc)z

2
gx,0)=s (1 — w2) sin(kx),

Xe —W<X<Xe+w

©)

with a fixed amplitude, widthw = 20 and modulation
wave numbek = 1/3 in thex direction[18]. Kondic
and Bertozz[13] chose a family of functions
(x — xc)2:|

= (10)

g(x,0)= —sexp [—4 In2
with adjustable parametessand w. Finally, Ye and
Chang[14] used the essential eigenfunctionsidf)

in place of the initial disturbances. Essential eigenfunc-
tions are plane waves

g(x, 0) = se't* (11)

stable system (such as a film spreading down a slopeahead of the contact line and decay exponentially fast

at small angle of inclination) disturbances can undergo
transient growth before asymptotic decay eventually
sets in. The strength of transient growth can be
characterized by computing the norm of the amplified
disturbancéh(x, y, t) and comparing it with the norm
of the initial disturbance, sa$i(x, v, 0) = g(x, 0)e'?”,
giving the following measure:

_ 18hGe, v Dllp _ 188, 3, )l
18h(x, 3,0, l12(x, O)l

vp(g: 1) (8)

behind it. Although easy to compute, the definition
(8) provides somewhat limited information, since the
amount of transient amplification may (and in fact
does) depend quite sensitively on the choice of initial
disturbanceg(x, 0). One should therefore regdR) as

a lower bound on transient amplification. Yet all three
studies find strong transient growth that can easily am-
plify initial disturbances by two orders of magnitude
or more. Furthermore, in all of these studies transient
amplification achieves its maximum at a nonzero value
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of the transverse wave numhgrsuggesting that tran-  describing the growth due to transient effects. Initial
sient amplification can, indeed, provide an alternative disturbances that are amplified the most at a given time

mechanism for the contact line instability. t are called “optimal disturbances” or “optimal inputs”
Adifferent approach is to define transient amplifica- and can be found via the singular value decomposi-
tion as a maximum g) over all initial conditions. Al- tion of the evolution operator &’ [12]. We will often

though one clearly cannot sample all initial conditions, use the maximal transient amplification for all times
in the linear theory wher&h(x, y, t) = g(x, t)€?’, the vp(g) = max y,(q, t) instead of(12) and (13)
resulting quantity can be related to the matrix norm of
the evolution operatd®]
4. Disturbances behind the contact line

leC Dl
)= sup o2l _ [|ghla)
yr(@: 1) = SUp S O, |

, 12
p (12) We have computed transient amplification numeri-
cally from (12) and (13¥or both the precursor and the
slip model using different norms. With few exceptions
the results are qualitatively similar for differept so
we will concentrate primarily on theo-norm consid-
ered in the majority of studies. Transient amplification
as a function of the wave number is showrig. 3and

which can be computed numerically using the standard
technique of spectral decomposition. This latter defi-
nition, with p = 2, was used by Davis and Troian in
the most recent studjl5] based on the slip model.
The authors found transient amplification to be weak

(barely more than an order of magnitude) and pee.1k at provides information complementary to the dispersion
zero wave number, contrary to the results .of previous relationfo(¢) shown inFig. 2 In the slip model we find
studies, and therefore incapable of producing a signif- 15t transient amplification increases with decreasing
icant distortion of the contact line. g, reaching a maximum of a few tensgt= 0, with a

In the unstable band transient growth is followed by oiher weak dependence on the param2@escribing
exponential growth, rather than decay($B)produces the inclination angle of the plane.

adiyerging result. Factoring outthg exponent_ial growth Our resullts for the slip model are qualitatively and
as in Refs[6,10], we can generaliz€l2) to give an 4 antitatively similar to those of Davis and Troian

expression [15] who used similar parameters but a different norm,
leCe, Dl ~ p = 2. Direct comparison of magnitudes of transient

Vplg. 1) = sup =L e Pl = | dL@—Folallr amplification computed in different studies, however,
¢(x.0) I1g(x, O)ll p should be made with care: the magnitude of transient

(13) amplification depends both on its definition (the choice
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Fig. 3. Maximal transient amplificatiop,, as a function of the transverse wave numdpéar (a) D = 0 and (b)D = 5. The precursor width in
(a)isl, = 0.16 and in (b) is as indicated. The other parameters arefigirl. The dotted curve in (b) shows the analytic re¢lif).
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Fig. 4. Maximal transient amplificatiop, atg = 0 as a function of the system sik#or (a) D = 0 and (b)D = 5. The other parameters are as
in Fig. 1 A; and B; are constants determined from a least squares fit.

of the norm) and on the sizef the computational do-  which immediately leads tg, (0) 13=1/P_ Therefore,
main on which the evolution operator is discretized. g|| yp With p > 1 diverge in the limif — oo, so that,
For instance, our calculations for differdmiresented at least in principle, one can construct an initial dis-
in Fig. 4 show thaty; ~ const., whiley, oc /%2 and  turbance which will produce arbitrarily large transient
Yoo o I, when computed at = 0. This dependencecan  growth.
be understood by considering the structure of the lead-  Restricting the size of the computational domain
ing eigenfunctiorgo and its adjointfo. is equivalent to imposing an initial disturbance of fi-

Numerical calculations show that, for anyp and nite spatial extent on an unbounded film. Initial dis-
g = 0, achieves amaximum for— oo (thisisaglobal  turbances with larger spatial extent are closer to the
maximum for the slip model, but may be a local max- optimal disturbancefo = const. and thus are ampli-
imum for the precursor model as we will see later). fied stronger. Once the identification of the computa-
Using the spectral decomposition of the matrix expo- tional domain sizd with the width w of the initial
nential we obtain disturbance is made, the blow-up pf with | (or w)

oy . (O)¢ b can be readily understood. For a film of infinite spatial
O = Zg”eﬁ © f”T = gofo. 1= 0, (14) extent the optimal initial disturbanggx, 0) = 2 fo,
" with & = const.« 1, corresponds to a change in the
as Bo(0) =0 is the only non-negative eigenvalue. thickness of the film's flat tailhg — ho + 8h. From
Hence, the maximal transient amplification is achieved (1) and (2)we see that the contact lines of the undis-
for the optimal initial disturbances equal to multiples turbed and the disturbed film will move with con-
of fo. The evolution amplifies these disturbances and stant but different speeds, which for small enough
transforms them into multiples of the leading eigen- p and« are given byu ~ h(Z)(oo) =1 andu + su ~
functiongo ast — oo. From(12) and (14)ve have (ho(c0) + 8h)? ~ 1 + 28h, respectively, leading to a

+ 9 linear growth in the separatiodx = dut ~ 25h¢. If
y(0) = ||8ﬁJ]:o{0||p — ”g0””;|:|f0”2 such uniform initial disturbance extends only a finite
JOlip ollp

(but large compared with the characteristic width of
Sincego(x) = hgy(x) has an essentially finite support (it

the capillary shock) distancew from the contact line,
is exponentially small outside of the capillary shock re- the separation in the position of the two contact lines
gion), we havd|go|l , = const. (with a different const.

will grow linearly for a finite timer*, while the dis-
for differentp) for | greater than the width of the cap- turbance is advected toward the contact line and then
illary shock. Furthermorefo(x) = const., so

(15)

stop. This time* and the maximal separatién™ can

be computed using volume conservation: the initial vol-
ume differencevéh has to be equal to the final volume
differencehg(co)éx™ = éx*, yielding x* = wéh and

1ol = [ 1ot e e, (16)
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t* = 8x*/du ~ w/2. We therefore obtain

e )1,
12Cx, O)l

(Jo© 1go(x)dx*|P dx)l/p
(f(;u |8h|P dx)L/P

For initial disturbances with small (compared with
171) but non-zero wave numbers the distortion of the
contact line will experience transient growth until the
transverse modulation in the thickness of the film be-
hind the contact line dies away due to the stabilizing
action of gravity and surface tension. This modula-
tion will decrease exponentially with the time scale
7(¢9) = (Dg? + ¢*)~1, as can be seen from the evo-
lution Egs. (1) or (2) linearized about the flat pro-
file h(x, y) = 1. Transient amplification factor can be
estimated using the maximal distortion of the con-
tact line. For instance, taking = co and assuming
max, |go(x)| ~ ¢, the slope at the contact line, we ob-
tain

Vp (0)

~ wi=r,

(17)

*

Yoolq) & 2¢ / e/ dr = 2c7(g)(1 — e~/ @)
0

2
=cw — CDquz + 0(¢™). (18)
Given the crudeness of this estimate, it is in reason-
able agreement with our numerical result for= 5,
asFig. 3 shows, even for relatively large Forg = 0
transient amplificationf18) grows linearly withw and
can be made arbitrarily large by increasing the spatial

L |— p=0.16 AN
= lp=0.46 ,‘ p

10f

-- slip P Y

0.01
(a) t

l!lll

111

extent of the disturbance. However, zero wave num-
ber disturbances do not lead to distortion of the contact
line. For any non-zerq there is a finite upper bound
independent ofv,

¥oo(q) < 2c(q) = 2¢(Dg? + g™, (19)

which is a more practically important result.

5. Disturbances ahead of the contact line

The preceding analysis applies equally to the slip
and the precursor model, assuming that the initial
disturbances are localized behind the contact line.
It should come as no surprise then that the precur-
sor model produces transient amplification essentially
identical to that of the slip model when the numeri-
cal precursor is very narrowr{g. 3). For intermediate
values ofl, we again find good agreement at sngll
while at largeiq there is a significant differences; (¢)
levels off for the precursor model, with the height of the
plateau which increases with, while the slip model
predicts a monotonic decay. This difference can be un-
derstood by looking at the time dependencggfy, 7).

Fig. 5a shows that while the slip model produces a
curve with a single maximum, in the precursor model
transient amplification can peak twice. The first max-
imum is achieved rather quickly (at time ~ [, in-
dependent of), asFigs. 5b and b show), while the
second maximum is achieved much later (at about the
same time» when transient amplification peaks in the

100

10}

Fig. 5. (a) Transient amplification,, atg = 0.36 for the slip and precursor model as a function of time. The width of the numerical precursor
film is as indicated. (b) The times at which the maximadnare achieved as a function of wave number in the precursor model witfD.46.
The second maximum disappears at larger wave numbers. The other paramelets &re = b = 0.01 andc = 1.303.
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Fig. 6. (a) Transient amplificatiop,, and (b) the time at which the maximum is achieved as a function of the precursoriyidife used
a relatively large wave number= 0.6 for which y», has a single maximum. The other parameters/are 5 andb = 0.01. A is a constant

determined from a least squares fit.

slip model). For relatively small precursor widththe
second maximum dominates for smaland the first

one for largey, explaining the crossover effect observed

in the precursor model. At largéy the first maximum
is dominant for allg, so one obtains transient ampli-

fication which is essentially independent of the trans-

verse wave number of the initial disturbance (e
3b). FurthermoreFig. 6a shows thay(g, t1) scales
aslf/3 with the width of the numerical precursor film
(for the relatively small values @f, considered in this

study).

the most obvious effect is the change in the thickness
of the capillary ridge, as noted by Bertozzi and Bren-
ner[6]. However, for small inclination anglekig. 1b)

the capillary ridge disappears. In this regime it is more
appropriate to consider the effect of the precursor thick-
nessb on the slope of the capillary shock. This depen-
dence (which follows from the non-linear theory) is
shown inFig. 7b. The data points are well fitted by a
curve

maxhp(x) = Az + Ba(In b~ 1)1/3, (20)

These results can be understood qualitatively by

identifying /,, with the spatial exteni,, of the initial

which corresponds to the thickness profilg ~

disturbance in the physical precursor film extending to x[In(x/5)]*/3 near the contact line computed by Dus-
x = —oo. Precursor thickness affects the shape of the san and Davi§l9] and de Gennelg0]. The argument

capillary shock. For large inclination angldésiq. 1a)
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Fig. 7. (a) Transient amplificatiop,, for ¢ = 0.6 and (b) the maximal slope of the capillary shock as a function of the precursor thidkness
The other parameters afe= 5, b = 0.01 and/, = 0.2. A; and B; are constants determined from a least squares fit.
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amplification withb then gives

dho(x)  dmax hg(x)
X
b ab
o (In b~H=2/3p1,

Yoo(0) o max
X

(21)

113

at timet; = wy/u ~ 1, (recal,u =1+b+b?>~ 1
andw, =[,), in agreement with our numerically ob-
tained scaling Kig. 6b). According to this scenario,
spatially uniform initial disturbances would produce
the largest net amplificatiop,,(0). The optimal ini-
tial disturbanceg(x, 0) producing peak transient am-

in good agreement with our numerical results obtained plification at timer; can also be found numerically by

for fixed [, (or w)), asFig. 7a shows. Previous stud-
ies mostly found power law scaling,(0) o< 5% with
various exponentg. For instance, the study of Ye and
Chang claimed the exponent to bé&, although the re-
ported dataKig. 6o of Ref.[14]) would, in fact, agree
much better with a scaling relation such(@4). The
limited data of Bertozzi and Brenng8] roughly cor-
responds to the exponentl. A later study by Kondic
and Bertozzi13] found the exponent to be closer to
—4/3 for non-infinitesimal disturbances (their distur-

computing the singular value decomposition of the evo-
lution operator &', The result forg = 0 is shown

in Fig. 8a. Indeed, we fing(x, 0) to be nearly con-
stant for—I, < x < 0 (aside from a capillary shock
atx = —I,), which is consistent with our qualitative
description. Most important, this optimal initial distur-
bance is quickly transformed by the evolution operator,
such that at timey its shape looks almost identical to
the leading eigenfunctiogo(x) = hg(x) near the con-
tactline, ag-ig. 8a shows. Therefore, the main effect of

bances were comparable to the precursor thickness it-disturbances in the precursor thickness is to change the

self), which can be regarded as a non-linear efféigt.

position of the contact line, not the thickness of the cap-

7a also shows that the transient amplification in the pre- illary ridge, as suggested by Bertozzi and Brer6ér

cursor model deviates rather significantly from thé
scaling.

As we increasé,, wider and wider initial distur-
bances are allowed. Simultaneouslyncreases, mov-

Next we turn to the description of time dependence ing peak transient amplification toward later and later

starting, as in the previous Section, with the case0. times, so that, according to the analysis of the previous
Once the contact line encounters a region of a locally section, the optimal initial disturbances approach mul-
thicker/thinner precursor (of widt,) the capillary tiples of the leading adjoint eigenfunctigi = const.
shock cannot adjust to the change in the precursor and are transformed by the evolution operator into the
thickness instantaneously. Instead the deformation of multiples of the leading eigenfunctiggy(x) = hg(x),

the shock will continuously increase (while the contact describing the translation of the contact line. The
line moves over the disturbed region of the precur- distortion corresponds to non-zero transverse wave
sor), reaching a maximum when the contact line com- numbers, for which we can invoke the same argument
pletely crosses the disturbed region. This would happen as before: the contact line will advance with a speed

(3]
(3]

Fol— h“(.x‘)

_—— h“’(.\')
== g(x,0)
= gLt

(b) x

Fig. 8. Optimal initial disturbancg(x, 0) that produces the largest disturbar¢e, r) at the peak time; for (a) ¢ = 0 and (b)g = 0.6. The
other parameters a® = 5, b = 0.01 and/, = 1.06.
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determined by the local thickness of the precursor. The [14] show the amount of transient amplification to de-
transverse modulation in the thickness of the precursor pend rather strongly on the transverse wave number.

will decrease exponentially with time, just as the mod-
ulation in the film thickness behind the contact line,
but at a much slower rate(q) = b=3(Dg? + ¢*)~ 1.
Effectively, for the range of wave lengths of interest
and realistic values ob, the effect of this decay is
completely negligible, explaining our earlier observa-
tion thaty,(¢) becomes flat for the range gfwhere
the first maximum iny« (g, t) dominates (se€ig. 3).
Indeed, a quick comparison Bfg. 8a and b shows that
the shape of the optimal initial disturbance ahead of
the contact line is essentially independengpivhile
behind the contact ling(x, 0) is sharply reduced for
non-zerog — the modulation behind the contact line

dies out much quicker and is therefore less capable of

producing large transient growth than the modulation
ahead of the contact line which persists for a long
time.

This picture suggests the following scaling of the
maximal transient amplification
yp(g) o (In ™1 72/3p Ly~ 1/P (22)
for w), large (again compared with the capillary shock
width ;). At small/,(= w,) our numerical computa-
tions also produce a power law scaling §at(g) with
I, (seeFig. 6a), but with exponent 2/3 rather than 1,
as predicted by2?2). This disagreement should not be
too alarming — when the peak amplification occurs
at small times; ~ w, the decompositio14), which
forms the basis for the scaling, is not yet valid. How-
ever, we expeci(q) to approach linear scaling at
largerw, and eventually diverge fow, — oo. This

For instance, Refl6] producesy,(0.6) ~ 800 com-
pared withys,(0) ~ 200 (forb = 0.001 andD = 5) —

a factor of four difference. It is possible that this differ-
ence is due to the specific choice of initial disturbances
(recall, we compute,(g, t) as the maximum oveall
initial disturbances, while Reff5,14] considered only
longitudinally modulated disturbancé8) and (11).
The calculation of Kondic and Bertozgl3], on the
other hand, shows very wegkdependence of transient
amplification for initial disturbance@.0) with no lon-
gitudinal modulation. For instance, for a disturbance of
width w, = 20 they get/»,(0.5) &~ 75 compared with
¥(0) = 60 (forb = 0.01 andD = 5).

6. Discussion

Summing up, we find that much of the reported
disagreement between the predictions of linear and
non-linear theory regarding transient amplification of
spontaneous disturbances is due to a rather arbitrary
way in which the amplification itself is defined. For
instance, direct comparison requires that the same
norm be used (e.g., studies based on non-linear theory
[6,13] used theoco-norm, while those based on the
linear theory[15] used the 2-norm). Furthermore, the
predictions obtained for particular initial disturbances
[6,13,14] cannot be directly compared with the pre-
dictions based on the optimal initial disturban§¥s],
as the former could be highly non-optimal. Finally,
this dependence on the choice of initial disturbances
implies that the size of the computational domain has

expectation seemsto be supported by the data of Kondicto be at least as large as the spatial extent of the class

and Bertozzilig. 3c and especially Fig. 4 of RdfL3]).
Their scaling at smalb, is also consistent with our re-

of initial disturbances under consideration.
Nevertheless, we find reasonable quantitative agree-

sult. The data of Ye and Chang who found the amount ment between the predictions of linear and non-linear

of transient amplification to increase with decreasing
longitudinal wave numbek of initial plane wave dis-
turbanceskKig. 6a of Ref.[14]) are also consistent with
our predictions: initial disturbances with smalleare
closer to the optimal disturbang@ = const. and thus
are amplified stronger.

theory based on the precursor model, provided that sim-
ilar classes of initial disturbances are used. The non-
linear effects appear to be relatively mild and do not
qualitatively alter the predictions of the linear theory.
The only qualitative difference between the predictions
of different studies, the origin of which we have not

Perhaps the only qualitative difference between our been able to determine conclusively, is the detailed de-

results and those of other studies is thdependence
of transient amplification in the precursor model. The
data of Bertozzi and Brenng¢6] and Ye and Chang

pendence of transient amplification on the transverse
wave number of the initial disturbance. Further studies
using both linear and non-linear theory are needed to
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Fig. 9. The maximal slope of the capillary shock (a) as a function of the contact anglef@.01 andD = 5 and (b) as a function of the slip
parameter for = 1.303 andD = 5. A; and B; are constants determined from a least squares fit.

determine whether the maximum is indeed achieved at much stronger:

finite wave numbers and, if yes, why.

We find significant disagreement between the pre-
dictions of the precursor model and the slip model. Ina
nutshell, the largest transient amplification in the pre-
cursor model is produced by disturbances localized in
the precursor film due to the extreme sensitivity of the
capillary shock to the microscopic structure of the pre-
cursor. This sensitivity has been artificially eliminated
in the slip model considered by Davis and Trojah].

In order to incorporate the effect of microscopic struc-
ture of the liquid—solid interaction on the dynamics of

dmax, hg(x) 1
X ——mmmMmMmMm X«
oo

i.e., by many orders of magnitude for realistic values of
a. Numerical evidence supporting this conclusion has
been obtained by Hoffmann et §21]. Therefore, to
match the predictions of the precursor model, the slip
model has to be reformulated fparametricdistur-
bances. As it stands, the slip model does not adequately
describe transient dynamics.

As we have shown, the linear theory (and hence the

: (24)

Yoo

the response of the capillary shock to: (i) the distur-

transient amplification. For films spreading on a dry

the slip coefficientr. Only (i) was considered in Ref.
[15]. As is well known[3], the shape of the capillary

by imposing initial disturbances which correspond to a
very slow transverse modulation of the film thickness

ridge depends relatively weakly on the slope parameter i 5 wide strip immediately behind the contact line. An

c (also sed-ig. 9a). As a result, one should only expect
moderate transient amplification of disturbances in the
contact angle:

dmax, hg(x)
X ——— X

2
dc © (23)

Yoo

in agreement with our analytic res\it8) and consis-
tent with the numerical results of Davis and Trojah

even stronger transient amplification can be produced
for spreading on a prewetted plane, if a similar thick-
ness disturbance is imposed in the precursor film just
ahead of the contact line. Practically achievable tran-
sient amplification is only limited by the width of the
strip and the modulation period, which can be increased
by increasing the system size. Of course, the distur-
bances that are realized in typical (rather than specially

On the other hand, the dependence on the slip parame-designed) experimental conditions will likely be highly

tera is quite sensitive, just like the dependence on the
parameteb in the precursor model. We find this de-
pendence to be logarithmic (sEgy. %), in agreement
with the analytical predictiorig]. We can therefore ex-

non—optimal and as a result will be amplified much less
than the optimal ones. On the other hand, transient am-
plification should also become very large in the limit
of small precursor thickness (or small slip coefficient),

pect disturbances in the slip parameter to be amplified in which case even non-optimal disturbances should be
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(i) to what degree the naturally occurring disturbances [4] JR de Bruyn, Growth of fingers at a driven three-phase contact
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