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We consider the failure of localized control in a nonlinear spatially extended system caused by extremely
small amounts of noise. It is shown that this failure occurs as a result of a nonlinear instability. Nonlinear
instabilities can occur in systems described by linearly stable but strongly non-normal evolution operators. In
spatially extended systems the non-normality manifests itself in two different but complementary ways: tran-
sient amplification and spectral focusing of disturbances. We show that temporal and spatial aspects of the
non-normality and the type of nonlinearity are all crucially important to understand and describe the mecha-
nism of nonlinear instability. Presented results are expected to apply equally to other physical systems where
strong non-normality is due to the presence of mean flow rather than the action of control.
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It has been known for a long time that systems describethis exponential decay can be preceded by a transient. The
by nonnormal evolution operator®perators with nonor- strength of non-normality can be determined by the transient
thogonal eigenfunctionsoften display rather surprising dy- amplification factor
namics. For instance, turbulence in shear flows often devel-
ops for Reynolds numbers where the basic flow is still (1) L
linearly stable. The critical Reynolds number was found to Y= maxw=ma>¢|e I, 2
depend rather sensitively on the geometry of the system and L4 (0) t
the roughness of the boundaries. Several stydie§| have
linked the onset of turbulence tormnlinearinstability aris- ~ such thaty=1 for L normal. The maximal transient ampli-
ing from the interaction between the nonlinearity of thefication is achieved for the optimal initial disturbang€0)
Navier-Stokes equation and the non-normality of its linear-= ¢,p; at the optimal time =t [7].
ization caused by significant mean flow. More recently the Any initial disturbancep(0) with a nonvanishing compo-
idea of a nonlinear instability has been used to explain thé@ent along¢,,; will be transiently amplified as well. For
disagreement between the predictions of the linear stabilitgmall disturbancesg=||4(0)||<1, the linear terms will
analysis and experimental data for the contact line instabilitdominate, so at the peak of the transient we will have
in gravity driven spreading of thin liquid film§4]. Non-  [[Lé(top)|~ @ (tepl~yo. For a quadratic nonlinearity,
normality can also arise in the absence of mean flow as hf(¢(topt))||~(yo)2, so it will produce an integrated devia-
result of localized feedback contrfb,6]. In this paper we tionin Eg.(1) of ordertopt(ya)2 in the same amount of time
use the idea of a nonlinear instability to explain the failure ofit takes the linear operator to amplify the initial disturbance
localized control of a spatially extended nonlinear system irby O(y). The temporal analysis makes an implicit assump-
the presence of extremely weak noise. We extend and refirten that generically this deviation has again a nonvanishing
ideas described in Reff2,5] by incorporating the informa- component along the optimal disturbangg,;, so it will be
tion about the spatial degrees of freedom. transiently amplified byL in the same way as the initial

All studies of strongly non-normal systems conducted updisturbance.(As we will see below, this assumption can
to now have analyzed the mechanism for nonlinear instabilbreak down for spatially extended systems due to their high
ity by concentrating only on théemporal dynamics. Al- symmetry) The deviation due to nonlinear terms will grow
though the importance afpatial degrees of freedom is gen- producing a positive feedback loop, ﬁgpt(ya')zz o, and
erally recognized, the complexity of the problem usuallydecay otherwise. The critical magnitude of a disturbance
prevents consistent spatiotemporal analysis. As the subseeeded to bootstrap the nonlinear instability will, therefore,
quent discussion shows, spatial information is crucial for unscale likeo~t, ¥~ 2 for a quadratic nonlinearity. While in
derstanding the mechanism that leads to nonlinear instabilitgome systems such as channel figy~ ¥, more often the
which involves transient amplification of deviations pro- dependence o, is too weak to be of any importance, e.g.,
duced by nonlinear terms. However, before developing thgor both coupled map latticef5,8] and partial differential
spatiotemporal description, it will be useful to review someequationg 6] with localized controlt,,~ I y. In the latter
results of the temporal analysis. Following REZ] let us  case we have a simple power law scaling y* with an

consider a system exponenta=—2.
. Sometimes, temporal analysis is sufficient and does give
d=Lop+1(p), (1) correct predictions for spatially extended systems. For in-

stance, a controlled lattice of coupled quadratic ni&psas
wherelL is a stable linear operator afids a nonlinear func- indeed produced the scaling exponent —2. However,
tion of its argument. In a purely linear system the disturbancesometimes the predictions of the temporal analysis are
decays asymptotically in time. However,Lifis non-normal, clearly wrong, suggesting that the spatial structure of distur-
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FIG. 1. The noise level for which localized linear control fails as
a function of the transient amplification factor for different types of gg) = 1—q? for the original and controlled system. The system

nonlinearities 2, squares;p,¢, diamonds;¢S, open triangles;
¢*, circles; ¢°, filled triangles. Straight lines are theoretical fits

with slopes given by Eq5).
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FIG. 2. The wave numbers, and the corresponding eigenval-

size here and in the rest of the papetis20.

to know why an advective termp, ¢ produces the same scal-

ing as a simple quadratic nonlineariy despite their differ-

bances plays an important role and cannot generally be igent symmetry properties. As it turns out, the explanation can

nored. A particularly simple example of the failure of tem- be obtained rather easily by conducting a spatiotemporal

poral analysis is provided by the generalized Ginzburg-analysis of the bootstrapping mechanism. Indeed, transient
amplification represents just one aspect of the non-normal
dynamics. The other aspect ignored by the temporal analysis

() is the focusing of the initial disturbances in the direction of
the most strongly non-normal eigenfunctions.

which (aside from the stochastic teré) is of the same form
as Eq.(1). The dynamics of GGLE can be made linearly the linear operatot.=1+ 42, its eigenfunctions are sinu-

stable via feedback control imposed at the boundaries

|
$(00=0, ' (L,t)= fOK(xw(x.t)dx,

have shown previously6], the application of spatially local-
ized control(4) to spatially extended systef8) makes the

It is easy to see that due to the translational invariance of

soidal, with or without control. Boundary conditio4) de-

termine the wave numbeqg of an eigenfunction and the
(4) corresponding eigenvalue=1—q?, such that the eigen-

function is stable wheg>1 and unstable otherwise. In par-

ticular, the eigenfunctions of the original systéno feed-
whereK(x) is an appropriately chosen gain function. As we back, K(x)=0] are u,(x) =sin(qx) with q,=m(k—1/2)/,

so at least one will be unstable fbr /2. All eigenfunc-
tionsv(x) = sin(gyx) of the controlled system are stable with

linearized dynamics strongly non-normal. We therefore, exyayve numbersy,>1. In generalg, might be complex, but
pect the nonlinear instability to play a prominent role in de-\ye can always force them to be real. This is done throughout
stablllz_atlon as large transient amphﬁcaﬂon r_nake'_s thepe paper by calculating (x) using linear-quadratic control
dynamics extremely susceptible to noise. Numerical S|mula[9]. Appearance of complex eigenvalues does not affect the

tions of Eq.(3) with a power law nonlinearity (¢) = ¢" and
random noise& uniformly distributed on ¢ o,0) show(see
Fig. 1 that the critical noise level resulting in the failure of
linear control scales as a power law~ v, with an expo-

nent well approximated by

-n/(n—=1), n=24,--
a=

-1, n=3,5, .

The exponent fon even is correctly predicted by a properly (non-normal [6].

following analysis. As Fig. 2 shows, feedba@k shifts all
wave numbers from the unstable ba@d =(0,1) into the
stable band) = (1,¢). The new wave numbers, cluster
most tightly in a rather narrow ban@, centered atg*

~1.36. As the sizd of the system grows, an increasing
number of eigenfunctions of the original system becomes
(5) unstable and gets squeezed iQpby feedback. As a result
the distance between wave numbersQp shrinks and the
corresponding eigenfunctions become increasingly aligned

generalized temporal analysis. Indeed, for controlled GGLE Now, let us consider what happens with an initial distur-
topr~ In y~I, so comparing stochastic disturbances of ordebance(x,0). Let us first concentrate on the linear effects.

o with the distortions of orderyo)" produced by a combi-

As the set{v,} is complete, in the absence of noise the

nation of transient growth and nonlinearity, we immediatelygeneral solution of linearized equati¢®) is given by
obtain the scalingr~y~ ("1, However, the correspond-
ing exponent is inconsistent with our numerical resultsrfor

odd.

This discrepancy calls for the development of a more ac-
curate theory that will be capable of explaining the effects ofwherex | =1—(q;)2. The coefficients, can be found using
arbitrary types of nonlinearities. In particular, we would like the adjoint eigenfunctions,(x):
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FIG. 3. Fourier spectra of the first five adjoint eigenfunctions of  FIG. 5. Normalized Fourier spectrum for a linear system driven
the controlled system. The expansion is in the bésj$ of eigen- by random noise uniformly distributed onr-(@, o).
functions of the original systemy,(x) ==, W, Sin(g.X).
dom noise. The spectrum is computed for the “worst case
~ (Wi(X),¢(x,0)) perturbation,” as this is the type of disturbance that leads to
C= (Wi(X),0(X)) () both the failure of linear control and more generally to the
onset of nonlinear instability. Specifically, the state is ex-
where we assume that the eigenfunctions are normalizeganded in the basis,},
such that||lw|=|v.]|=1. As the eigenvalues., are all
stable, it is clear that transient amplification can only result *
from large values of the coefficienty. For c, to become d(X,t)= E c(t)sin(qpx), (9
large two conditions have to be satisfied. First, the numerator k=1
in Eq. (7) should not be small, i.e., the initial disturbance ) ) o
should not be orthogonal to the adjoint eigenvestgr As ~ and the “worst case” spectruiii[ ¢] is obtained by finding
adjoint eigenvectors satisfy the orthogonality conditionthe maximal values ofc,(t)| for eachk. The Fourier coef-
(Wy,vym) =0 for k#m, their Fourier spectra are localized to ficients outside ofQ are seen to be exponentially small.
the unstable ban, (see Fig. 3 Therefore, only distur- These two intimately related aspects of the non-normal
bances with significant spectral content@n will be tran- ~ dynamics—transient amplification and focusing—are likely
siently amplified.(Such disturbances will grow indefinitely t© P& quite. common in other strongly non-normal spatially
in the uncontrolled system; control makes this growth tran£xtended systems. For instance, a similar clustering of eigen-
sient) This is illustrated in Fig. 4 which shows the transient functions is found in a model describing thermally driven

amplification for sinusoidal initial disturbances: spreading of liquid filmg10]. _
Having understood the linear dynamics, let us now con-
lo(x, 0l sider what happens when nonlinearities come into play. For
B(d)=ma [6(x,0)] . ®) sufficiently smallo the nonlinearities will hardly change the
! T e(x.0)=sin(@x) linear dynamics. Their effect will be limited to “filtering”

The second condition is that the denominator in E4.  the transiently amplified disturbances, changing their magni-
should be small, which can only happen for strongly non,ge and spectral content. As the transiently amplified distur-
normal eigenfunctions, with g, € Q. As a result, the Fou- pances have a very narrow spectrum, the spectrum of the
rier spectrum of the transiently amplified disturbances willsignal produced by the nonlinear terms will also consist of
be strongly focused into the baij. several narrow peaks, as long as we consider nonlinearities

This focusing effect can be clearly seen in Fig. 5 whichof the power law typef(¢$)= " with moderaten. (High
shows the spectrum of the linearized GGLE driven by ranpowers are not interesting as scaling exponéhisfor the
even and odd powers become indistinguishable. Besides,
A L U M most physically interesting nonlinearities have low powers.

4 ] For instance, the spectrum of a quadratic nonlinearity, be

10 E it ¢2 or ¢, will only contain frequencies which are either
10°F . sums or differences of frequencieg, i.e., 0, |q,,—dnl,
« 3 2q,,, andq,,+q,,. As the Fourier coefficient corresponding
102;‘ 3 to the frequencyq,,*q,| is of orderc,c,,, the only signifi-
101;_ ] cant contributions are produced when bgthandq;, lie in

3 Q- This means that the spectrum of the quadratic term will
LT be localized neag=0 andq=2q* [see Fig. 63)]. The dis-
turbances withg~2qg* are strongly damped, so the primary
effect of most any quadratic nonlinearity will be to transfer
FIG. 4. Transient amplification factor for sinusoidal initial dis- the excitations from the ban@; back into the band) .,
turbances as a function of their wave number. where they will again be transiently amplified. After one full
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IEI L R B~ B B given by Eq.(5).
at ) The case of odd powers is substantially different. For in-
2;; a E stance, the spectrum of a cubic nonlinearftyp) = ¢ will
107 . 7 only contain wave numberfy,,=q,+q;|. As the corre-
‘e L RN sponding Fourier coefficients will be of ordef,c.cy, the
R 4_, F A _ spectrum will be strongly localized neay=q* and q
10 Lo a Ve =3qg*. Furthermore, as Fig. 6 shows, the spectral peaks of
Bt ot e, the nonlinear termsglo notbroaden. Therefore, a cubic non-
10.6'- o0 M TR P P R linearity will not transfer excitations fronQ back toQ, ,
0 1 2 2q* 3 4 5 and no bootstrapping will occur. The quintic nonlinearity
2) 1 f(p)=¢° is expected to produce similar results as its spec-
) trum will be localized neag*, 3g*, and 5*, and so on.
A T Destabilization will nevertheless occur for any powevhen
?: é. the nonlinear terms become of the same order of magnitude
10_2:_ R ‘an B as the linear termsyo)"~ vo, i.e., whenyoc=0(1). At
o & K X this point, the predictions of linear stability analysis become
§ ”§ A invalid. Therefore, fom odd the critical noise will scale like
104k g;& 2“‘4 ] v~ 1, justifying the second part of E¢B). The result for even
Zacese P kA powers is not changed, since nonlinear instability occurs for
v 6"%‘ .. x. "r..'! levels of noise much smaller than those at which linear sta-
10-6(; e L%, e R -;"I*"-"mfs bility analysis breaks down.
b a4 q & Summing up, we can conclude that, at least for a simple

equation such as the stochastically driven GGLE studied

FIG. 6. Normalized Fourier spectrum ¢d) the quadratic term  here, the failure of localized control can be explained by a
#* and (b) the cubic termg?®. straightforward spectral analysis of transient dynamics.
) ) _ - _ _ Moreover, spatiotemporal analysis appears to be crucial for
cycle involving transient amplification, focusing, and nonlin- ynqerstanding the mechanism of nonlinear instabilities in
ear filtering, an initial(e.g., stochastjcdisturbance of order spatially extended systems in general. In particular, as the

. . . 2
7 W"zlfmd#c? a deviation %f org_ery(ctr)) : Thergzll;ot)re,dfqr focusing effect described in this paper is an inherent feature
(yo)“=o the low wave number disturbances will be driven . strongly non-normal dynamics, its applicability is not con-

predominantly by the nonlinear term, bootstrapping a nonlin-_,__. ; e
ear instability. A similar picture will be observed fé( ) strained to the control problem considered here. A similar

— " with n=4.6, . . . . Thespectrum off (¢) will contain a analysis could provide va]uable |nS|ght§ into stability anq
: . ; control of shear flows, driven contact lines, and magnetic
strong component i@, and the bootstrapping will occur for

(yo)"= o, so the critical noise will scale like”, with « plasmag 1)
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