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Spectral theory for the failure of linear control in a nonlinear stochastic system
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~Received 14 September 2002; published 30 December 2002!

We consider the failure of localized control in a nonlinear spatially extended system caused by extremely
small amounts of noise. It is shown that this failure occurs as a result of a nonlinear instability. Nonlinear
instabilities can occur in systems described by linearly stable but strongly non-normal evolution operators. In
spatially extended systems the non-normality manifests itself in two different but complementary ways: tran-
sient amplification and spectral focusing of disturbances. We show that temporal and spatial aspects of the
non-normality and the type of nonlinearity are all crucially important to understand and describe the mecha-
nism of nonlinear instability. Presented results are expected to apply equally to other physical systems where
strong non-normality is due to the presence of mean flow rather than the action of control.
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It has been known for a long time that systems descri
by nonnormal evolution operators~operators with nonor-
thogonal eigenfunctions! often display rather surprising dy
namics. For instance, turbulence in shear flows often de
ops for Reynolds numbers where the basic flow is s
linearly stable. The critical Reynolds number was found
depend rather sensitively on the geometry of the system
the roughness of the boundaries. Several studies@1–3# have
linked the onset of turbulence to anonlinear instability aris-
ing from the interaction between the nonlinearity of t
Navier-Stokes equation and the non-normality of its line
ization caused by significant mean flow. More recently
idea of a nonlinear instability has been used to explain
disagreement between the predictions of the linear stab
analysis and experimental data for the contact line instab
in gravity driven spreading of thin liquid films@4#. Non-
normality can also arise in the absence of mean flow a
result of localized feedback control@5,6#. In this paper we
use the idea of a nonlinear instability to explain the failure
localized control of a spatially extended nonlinear system
the presence of extremely weak noise. We extend and re
ideas described in Refs.@2,5# by incorporating the informa-
tion about the spatial degrees of freedom.

All studies of strongly non-normal systems conducted
to now have analyzed the mechanism for nonlinear insta
ity by concentrating only on thetemporal dynamics. Al-
though the importance ofspatial degrees of freedom is gen
erally recognized, the complexity of the problem usua
prevents consistent spatiotemporal analysis. As the su
quent discussion shows, spatial information is crucial for
derstanding the mechanism that leads to nonlinear instab
which involves transient amplification of deviations pr
duced by nonlinear terms. However, before developing
spatiotemporal description, it will be useful to review som
results of the temporal analysis. Following Ref.@2# let us
consider a system

ḟ5Lf1 f ~f!, ~1!

whereL is a stable linear operator andf is a nonlinear func-
tion of its argument. In a purely linear system the disturba
decays asymptotically in time. However, ifL is non-normal,
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this exponential decay can be preceded by a transient.
strength of non-normality can be determined by the trans
amplification factor

g[ max
t,f(0)

if~ t !i
if~0!i 5max

t
ieLti , ~2!

such thatg51 for L normal. The maximal transient ampl
fication is achieved for the optimal initial disturbancef(0)
5fopt at the optimal timet5topt @7#.

Any initial disturbancef(0) with a nonvanishing compo
nent alongfopt will be transiently amplified as well. Fo
small disturbances,s5if(0)i!1, the linear terms will
dominate, so at the peak of the transient we will ha
iLf(topt)i;if(topt)i;gs. For a quadratic nonlinearity
i f (f(topt))i;(gs)2, so it will produce an integrated devia
tion in Eq.~1! of ordertopt(gs)2 in the same amount of time
it takes the linear operator to amplify the initial disturban
by O(g). The temporal analysis makes an implicit assum
tion that generically this deviation has again a nonvanish
component along the optimal disturbancefopt , so it will be
transiently amplified byL in the same way as the initia
disturbance.~As we will see below, this assumption ca
break down for spatially extended systems due to their h
symmetry.! The deviation due to nonlinear terms will gro
producing a positive feedback loop, iftopt(gs)2*s, and
decay otherwise. The critical magnitude of a disturban
needed to bootstrap the nonlinear instability will, therefo
scale likes;topt

21g22 for a quadratic nonlinearity. While in
some systems such as channel flowtopt;g, more often the
dependence ontopt is too weak to be of any importance, e.g
for both coupled map lattices@5,8# and partial differential
equations@6# with localized controltopt; ln g. In the latter
case we have a simple power law scalings;ga with an
exponenta522.

Sometimes, temporal analysis is sufficient and does g
correct predictions for spatially extended systems. For
stance, a controlled lattice of coupled quadratic maps@5# has
indeed produced the scaling exponenta522. However,
sometimes the predictions of the temporal analysis
clearly wrong, suggesting that the spatial structure of dis
©2002 The American Physical Society01-1
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bances plays an important role and cannot generally be
nored. A particularly simple example of the failure of tem
poral analysis is provided by the generalized Ginzbu
Landau equation~GGLE!

f t5f1fxx1 f ~f!1j, ~3!

which ~aside from the stochastic termj) is of the same form
as Eq.~1!. The dynamics of GGLE can be made linear
stable via feedback control imposed at the boundaries

f~0,t !50, f8~L,t !5E
0

l

K~x!f~x,t !dx, ~4!

whereK(x) is an appropriately chosen gain function. As w
have shown previously@6#, the application of spatially local
ized control~4! to spatially extended system~3! makes the
linearized dynamics strongly non-normal. We therefore,
pect the nonlinear instability to play a prominent role in d
stabilization as large transient amplification makes
dynamics extremely susceptible to noise. Numerical simu
tions of Eq.~3! with a power law nonlinearityf (f)}fn and
random noisej uniformly distributed on (2s,s) show~see
Fig. 1! that the critical noise level resulting in the failure
linear control scales as a power laws;ga, with an expo-
nent well approximated by

a5H 2n/~n21!, n52,4,•••

21, n53,5,•••.
~5!

The exponent forn even is correctly predicted by a proper
generalized temporal analysis. Indeed, for controlled GG
topt; ln g;l, so comparing stochastic disturbances of or
s with the distortions of order (gs)n produced by a combi-
nation of transient growth and nonlinearity, we immediate
obtain the scalings;g2n/(n21). However, the correspond
ing exponent is inconsistent with our numerical results fon
odd.

This discrepancy calls for the development of a more
curate theory that will be capable of explaining the effects
arbitrary types of nonlinearities. In particular, we would lik

FIG. 1. The noise level for which localized linear control fails
a function of the transient amplification factor for different types
nonlinearities (f2, squares;fxf, diamonds;f3, open triangles;
f4, circles; f5, filled triangles!. Straight lines are theoretical fit
with slopes given by Eq.~5!.
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to know why an advective termfxf produces the same sca
ing as a simple quadratic nonlinearityf2 despite their differ-
ent symmetry properties. As it turns out, the explanation
be obtained rather easily by conducting a spatiotemp
analysis of the bootstrapping mechanism. Indeed, trans
amplification represents just one aspect of the non-nor
dynamics. The other aspect ignored by the temporal anal
is the focusing of the initial disturbances in the direction
the most strongly non-normal eigenfunctions.

It is easy to see that due to the translational invariance
the linear operatorL511]x

2 , its eigenfunctions are sinu
soidal, with or without control. Boundary conditions~4! de-
termine the wave numberq of an eigenfunction and the
corresponding eigenvaluel512q2, such that the eigen
function is stable whenq.1 and unstable otherwise. In pa
ticular, the eigenfunctions of the original system@no feed-
back, K(x)50] are uk(x)5sin(qkx) with qk5p(k21/2)/l ,
so at least one will be unstable forl .p/2. All eigenfunc-
tionsvk(x)5sin(qk8x) of the controlled system are stable wi
wave numbersqk8.1. In general,qk8 might be complex, but
we can always force them to be real. This is done through
the paper by calculatingK(x) using linear-quadratic contro
@9#. Appearance of complex eigenvalues does not affect
following analysis. As Fig. 2 shows, feedback~4! shifts all
wave numbers from the unstable bandQ15(0,1) into the
stable bandQ25(1,̀ ). The new wave numbersqk8 cluster
most tightly in a rather narrow bandQi centered atq*
'1.36. As the sizel of the system grows, an increasin
number of eigenfunctions of the original system becom
unstable and gets squeezed intoQi by feedback. As a resul
the distance between wave numbers inQi shrinks and the
corresponding eigenfunctions become increasingly alig
~non-normal! @6#.

Now, let us consider what happens with an initial distu
bancef(x,0). Let us first concentrate on the linear effec
As the set$vk% is complete, in the absence of noise t
general solution of linearized equation~3! is given by

f~x,t !5 (
k51

`

ckvk~x!exp~lk8t !, ~6!

wherelk8512(qk8)
2. The coefficientsck can be found using

the adjoint eigenfunctionswk(x):

f
FIG. 2. The wave numbersqn and the corresponding eigenva

uesln512qn
2 for the original and controlled system. The syste

size here and in the rest of the paper isl 520.
1-2
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ck5
„wk~x!,f~x,0!…

„wk~x!,vk~x!…
, ~7!

where we assume that the eigenfunctions are normal
such that iwki5ivki51. As the eigenvalueslk8 are all
stable, it is clear that transient amplification can only res
from large values of the coefficientsck . For ck to become
large two conditions have to be satisfied. First, the numer
in Eq. ~7! should not be small, i.e., the initial disturban
should not be orthogonal to the adjoint eigenvectorwk . As
adjoint eigenvectors satisfy the orthogonality conditi
(wk ,vm)50 for kÞm, their Fourier spectra are localized
the unstable bandQ1 ~see Fig. 3!. Therefore, only distur-
bances with significant spectral content inQ1 will be tran-
siently amplified.~Such disturbances will grow indefinitel
in the uncontrolled system; control makes this growth tr
sient.! This is illustrated in Fig. 4 which shows the transie
amplification for sinusoidal initial disturbances:

b~q!5max
t

if~x,t !i
if~x,0!i U

f(x,0)5sin(qx)

. ~8!

The second condition is that the denominator in Eq.~7!
should be small, which can only happen for strongly no
normal eigenfunctionsvk with qk8PQi . As a result, the Fou-
rier spectrum of the transiently amplified disturbances w
be strongly focused into the bandQi .

This focusing effect can be clearly seen in Fig. 5 whi
shows the spectrum of the linearized GGLE driven by r

FIG. 3. Fourier spectra of the first five adjoint eigenfunctions
the controlled system. The expansion is in the basis$un% of eigen-
functions of the original system,wk(x)5(nWkn sin(qnx).

FIG. 4. Transient amplification factor for sinusoidal initial di
turbances as a function of their wave number.
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dom noise. The spectrum is computed for the ‘‘worst ca
perturbation,’’ as this is the type of disturbance that leads
both the failure of linear control and more generally to t
onset of nonlinear instability. Specifically, the state is e
panded in the basis$vk%,

f~x,t !5 (
k51

`

ck~ t !sin~qk8x!, ~9!

and the ‘‘worst case’’ spectrumFk@f# is obtained by finding
the maximal values ofuck(t)u for eachk. The Fourier coef-
ficients outside ofQi are seen to be exponentially sma
These two intimately related aspects of the non-norm
dynamics—transient amplification and focusing—are like
to be quite common in other strongly non-normal spatia
extended systems. For instance, a similar clustering of eig
functions is found in a model describing thermally drive
spreading of liquid films@10#.

Having understood the linear dynamics, let us now co
sider what happens when nonlinearities come into play.
sufficiently smalls the nonlinearities will hardly change th
linear dynamics. Their effect will be limited to ‘‘filtering’’
the transiently amplified disturbances, changing their mag
tude and spectral content. As the transiently amplified dis
bances have a very narrow spectrum, the spectrum of
signal produced by the nonlinear terms will also consist
several narrow peaks, as long as we consider nonlinear
of the power law typef (f)5fn with moderaten. ~High
powers are not interesting as scaling exponents~5! for the
even and odd powers become indistinguishable. Besi
most physically interesting nonlinearities have low power!

For instance, the spectrum of a quadratic nonlinearity,
it f2 or fxf, will only contain frequencies which are eithe
sums or differences of frequenciesqk8 , i.e., 0, uqm8 2qn8u,
2qm8 , andqm8 1qn8 . As the Fourier coefficient correspondin
to the frequencyuqm8 6qn8u is of orderckcm , the only signifi-
cant contributions are produced when bothqm8 andqn8 lie in
Qi . This means that the spectrum of the quadratic term w
be localized nearq50 andq52q* @see Fig. 6~a!#. The dis-
turbances withq'2q* are strongly damped, so the prima
effect of most any quadratic nonlinearity will be to transf
the excitations from the bandQi back into the bandQ1 ,
where they will again be transiently amplified. After one fu

f FIG. 5. Normalized Fourier spectrum for a linear system driv
by random noise uniformly distributed on (2s,s).
1-3
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cycle involving transient amplification, focusing, and nonli
ear filtering, an initial~e.g., stochastic! disturbance of order
s will produce a deviation of order (gs)2. Therefore, for
(gs)2*s the low wave number disturbances will be drive
predominantly by the nonlinear term, bootstrapping a non
ear instability. A similar picture will be observed forf (f)
5fn with n54,6, . . . . Thespectrum off (f) will contain a
strong component inQ1 and the bootstrapping will occur fo
(gs)n*s, so the critical noise will scale likega, with a

FIG. 6. Normalized Fourier spectrum of~a! the quadratic term
f2 and ~b! the cubic term,f3.
ll

S
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given by Eq.~5!.
The case of odd powers is substantially different. For

stance, the spectrum of a cubic nonlinearity,f (f)5f3 will
only contain wave numbersuqm8 6qn86qk8u. As the corre-
sponding Fourier coefficients will be of ordercmcnck , the
spectrum will be strongly localized nearq5q* and q
53q* . Furthermore, as Fig. 6 shows, the spectral peaks
the nonlinear termsdo notbroaden. Therefore, a cubic non
linearity will not transfer excitations fromQi back toQ1 ,
and no bootstrapping will occur. The quintic nonlineari
f (f)5f5 is expected to produce similar results as its sp
trum will be localized nearq* , 3q* , and 5q* , and so on.
Destabilization will nevertheless occur for any powern when
the nonlinear terms become of the same order of magnit
as the linear terms (gs)n;gs, i.e., whengs5O(1). At
this point, the predictions of linear stability analysis becom
invalid. Therefore, forn odd the critical noise will scale like
g21, justifying the second part of Eq.~5!. The result for even
powers is not changed, since nonlinear instability occurs
levels of noise much smaller than those at which linear s
bility analysis breaks down.

Summing up, we can conclude that, at least for a sim
equation such as the stochastically driven GGLE stud
here, the failure of localized control can be explained by
straightforward spectral analysis of transient dynami
Moreover, spatiotemporal analysis appears to be crucial
understanding the mechanism of nonlinear instabilities
spatially extended systems in general. In particular, as
focusing effect described in this paper is an inherent fea
of strongly non-normal dynamics, its applicability is not co
strained to the control problem considered here. A sim
analysis could provide valuable insights into stability a
control of shear flows, driven contact lines, and magne
plasmas@11#.
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