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Channel flow of an incompressible fluid at Reynolds numbers above 2400 possesses a number of
different spatially localized solutions that approach laminar flow far upstream and downstream. We
use one such relative time-periodic solution, which corresponds to a spatially localized version of
a Tollmien-Schlichting wave, to illustrate how the upstream and downstream asymptotics can be
computed analytically. In particular, we show that for these spanwise uniform states the asymptotics
predict the exponential localization that has been observed for numerically computed solutions of
several canonical shear flows but never properly understood theoretically.

Due to the development of new computational tech-
niques as well as an increase in computing power, our un-
derstanding of fluid flows in the transitional and weakly
turbulent regime has improved rather dramatically in the
past couple of decades. What started as a numerical ex-
ploration of minimal flow units with unphysical (e.g., spa-
tially periodic) boundary conditions [1–3] has eventually
yielded a large number of both stable and unstable non-
trivial solutions to the Navier-Stokes equation featuring
simple temporal dynamics. These solutions have pro-
duced significant insight into coherent structures [4, 5]
that have been routinely observed in experiments and
into the self-sustaining physical processes maintaining
turbulence in wall-bounded shear flows [6, 7].

In order to better connect numerical results with
experiments, computational domains have steadily in-
creased in both the spanwise and streamwise directions.
More recent studies discovered that many spatially-
periodic solutions start to localize in the spanwise di-
rection [8, 9], in the streamwise direction [10], or both
[11, 12], as the domain size increases. In both cases lo-
calization results from subharmonic instability. In par-
ticular, spanwise localization generates a discrete set of
solutions with different width due to the snaking mech-
anism [13]. The mechanism that controls streamwise lo-
calization is however not entirely clear.

Spatial localization plays a crucial role both in extend-
ing results obtained on relatively small computational do-
mains to arbitrarily large physical domains and in under-
standing how different regions of weakly turbulent flows
interact with each other. For instance, while temporal
aspects of intermittency in weakly turbulent flows were
understood with the help of dynamical systems theory
[14] a long time ago, the spatial organization of intermit-
tent flows (e.g., the formation of turbulent bands sepa-
rated by laminar regions) [15–17] is still an open prob-
lem, despite some recent advances [18]. The structure of
unstable nonchaotic solutions should help us better un-
derstand the dynamics and extent of turbulent bands,
spots, and puffs in a variety of shear flows and describe
how their size varies with the Reynolds number.

Quite a few of the spatially localized solutions com-
puted numerically have been found to exhibit an expo-

nential localization. Although there is some theoretical
support for exponential localization in the streamwise
direction [9], there is little understanding of the scal-
ing of the upstream and downstream tails of streamwise-
localized solutions, the spatial modulation of these tails,
or the mechanism that controls the drift speed of
streamwise-localized solutions. The aim of this communi-
cation is to show that streamwise asymptotics of several
dynamically important classes of spatially localized solu-
tions can be described very accurately by using particular
solutions of the Orr-Sommerfeld equation.

We will focus on the flow of an incompressible fluid
through a channel with parallel planar walls. It is de-
scribed by the Navier-Stokes equation which, after nondi-
mensionalization by the channel width, takes the form

∂tv + v · ∇v = −∇p+Re−1∇2v, (1)

where p is the pressure, x is the streamwise, y is the wall-
normal, and z is the spanwise coordinate. The laminar
solution satisfying the no-slip boundary conditions for
the velocity v at the walls of the channel (y = ±1) is
known as the plane Poiseuille flow: v0 = [U(y), 0, 0],
where U = 1− y2. Linearizing (1) about v0 yields

∂tṽ + U∂xṽ + vU ′x̂ = −∇p̃+Re−1∇2ṽ, (2)

where ṽ = [u, v, w] = v − v0, p̃ = p + 2Re−1x, and the
prime denotes the derivative with respect to y. For cer-
tain lower branch solutions [19], the streamwise pertur-
bation u dominates in the tail regions, so the asymptotics
are controlled by the x component of (2). Moreover, if
the terms vU ′, −∂xp̃, and Re−1∂2xu are neglected, the
following simple equation is obtained [11, 19]

∂tu+ U∂xu = Re−1(∂2yu+ ∂2zu). (3)

In general the spanwise and wall-normal components of
the velocity cannot be ignored, so we will use a less re-
strictive approach. With the help of the incompressibil-
ity condition ∇ · v = 0, the linear equation (2) can be
manipulated [20] to obtain the Orr-Sommerfeld equation(

∂t + U∂x −Re−1∇2
)
∇2v − U ′′∂xv = 0 (4)
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FIG. 1. A snapshot of the magnitude of the stream function ψ describing the MTSW at Re = 3802 on the axis y = 0 of the
channel. Numerical solution is shown in gray, the fits based on the solutions to the Orr-Sommerfeld equation for the leading
and trailing tail are shown in blue and red. Numerical accuracy of the solution corresponds to ln |ψ| ≈ −14.

for the wall-normal velocity v and the Squires equation(
∂t + U∂x −Re−1∇2

)
η + U ′′∂zv = 0 (5)

for the wall-normal vorticity η = ∂zu − ∂xw. It is cus-
tomary to look for solutions to (4) and (5) in the form
v = v̂(y)eiαx+iβz+λt and η = η̂(y)eiαx+iβz+λt, which
describe three-dimensional disturbances. In this case
∂t[·] = λ[·], ∇2[·] = (∂2y − α2 − β2)[·], yielding one-
dimensional boundary value problems for v̂(y) and η̂(y).

The Orr-Sommerfeld equation (4) can be solved inde-
pendently; its solution relates the streamwise wavenum-
ber α and spanwise wavenumber β of an infinitesimal dis-
turbance, its transverse profile v̂(y), and the eigenvalue
(stability exponent) λ = σ + iω. The spectrum of the
corresponding boundary value problem is discrete, with
infinitely many solutions; we will focus on the one that
corresponds to the eigenvalue with the largest real part.
Furthermore, since we are primarily interested in stream-
wise localization, we will only consider two-dimensional
(2D) disturbances for which β = 0, η = 0, and both wall-
normal and streamwise velocity components can be writ-
ten in terms of a stream function: u = ∂yψ, v = −∂xψ,
where ψ(x, y, t) = φ(y)eiαx+λt

Using the Orr-Sommerfeld equation with real α,
Orszag [21] has shown that at Rec = 5772.22 the lami-
nar solution becomes unstable toward a spatially periodic
modulation with wavenumber αc = 1.02056, and above
Rec the flow becomes turbulent. However, even below
Rec, multiple solutions of (1) have been found, both sta-
ble and unstable. One example is nonlinearly saturated
2D Tollmien-Schlichting waves (TSW), which have a spa-
tially uniform envelope. Mellibovsky and Meseguer [10]
have recently found a family of 2D localized solutions,
termed modulated Tollmien-Schlichting waves (MTSW),
related to TSW via a spatial subharmonic instability [22].
TSW correspond to relative equilibria and MTSW to rel-
ative periodic orbits: the former become stationary and
the latter, temporally periodic in a reference frame mov-
ing with some velocity c > 0 relative to the walls of the
channel. For both types of solutions c is the group veloc-
ity. The phase velocity is also equal to c for TSW but is
different from c for MTSW.

We have computed MTSW for several different Re on

a domain of length Lx = 400 (with periodic boundary
conditions in the x direction) using the package Chan-
nelflow [23]. The stream function associated with one
such solution at Re = 3802 is shown in Figs. 1 and 3(a).
A distinguishing feature of all MTSW is that their local-
ization is exponential, both in the upstream and in the
downstream direction, with the solution approaching a
laminar profile v0 for x → ±∞. This localization can
also be understood using the Orr-Sommerfeld equation.

Unlike the stability analysis, we should look at dis-
turbances with a streamwise wavenumber that is com-
plex, α = q + is, where the real part q describes the
spatial modulation and the imaginary part s, the spa-
tial attenuation of the tails of a localized solution. Let
ξ = x − ct describe the streamwise coordinate in the
reference frame moving with speed c (i.e., the group ve-
locity of the MTSW), such that, for ξ → ±∞, the tails
of the solution can be written in the form ψ(ξ, y, t) =
φ(y)eiqξ−sξeσ

′teiω
′t. Since the MTSW is temporally pe-

riodic in this reference frame, we should have

σ′ ≡ σ(q, s)− cs = 0,

ω′ ≡ ω(q, s) + cq =
2π

T
n, (6)

where T is the temporal period of the MTSW and n is an
integer. The system of equations (6) can be solved with
the help of the Matlab package chebfun [24] and possesses
several solutions for the relevant range of Reynolds num-
bers. Those with s > 0 describe the downstream/leading
tail (ψ → 0 for ξ → ∞) and those with s < 0, the up-
stream/trailing tail (ψ → 0 for ξ → −∞). Note that the
leading mode of (4) may not satisfy conditions (6) for
either positive or negative s for any q and n. In this case
the next leading mode has to be considered, etc.

When q = 0 the second equation in (6) is satisfied iden-
tically for n = 0, so only the first equation needs to be
solved for s. There are typically two solutions, one with
positive and one with negative s (see Fig. 2). In partic-
ular, for Re = 3802 we find two solutions a = (q, s, n)
with q = 0 and one with q 6= 0: a1 = (0, 0.130, 0),
a2 = (0.826,−0.0354, 1), and a3 = (0,−0.00642, 0). The
first two accurately describe, respectively, the leading
and the trailing tail of the corresponding MTSW, as Fig.
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FIG. 2. The growth rate in the co-moving frame, computed
using the Orr-Sommerfeld equation (4) (black line) and the
approximate equation (3) (gray line) for q = 0 and Re = 3802.

1 illustrates. The best fit values found using the fully
nonlinear numerical solution [anum1 = (0, 0.129, 0) for the
leading tail and anum2 = (0.826,−0.0355, 1) for the trail-
ing tail] are in excellent agreement with predictions based
on the Orr-Sommerfeld equation. On the other hand, (3)
predicts incorrect asymptotics for both tails. This is ex-
pected since for the MTSW, u and v are comparable.

We can further confirm the accuracy of the predictions
based on linearization by comparing the spatial profiles
of the stream function computed using the full Navier-
Stokes equation (1) and the Orr-Sommerfeld equation
(4). The results are compared in Fig. 3(b) for the leading
tail and in Fig. 3(c) for the trailing tail. In both cases
we again find excellent agreement.

The structure of the tails has an interesting physical in-
terpretation. In the stationary reference frame, the lead-
ing tail describes a disturbance ψ ∝ φ1(y)eiα1x+λ1t about
the laminar flow profile that is unstable (σ > 0), vanishes
at x → ∞ (s > 0), and has no spatial (q = 0) or tem-
poral (ω = 0) modulation. The transverse profile of this
disturbance (cf. Fig. 3(b)) corresponds to a monotonic
increase in the shear rate of the flow in the central re-
gion |y| < 0.45 of the channel. This increase in the shear
can be thought of as promoting the Kelvin-Helmholtz
instability, which, unlike the initial disturbance, has an
oscillatory character. The core of the MTSW (which we
define as the region shown in Fig. 3(a), where |ψ| and
the velocity perturbation are the largest) can therefore
be thought of as a result of nonlinear saturation in the
spatial and temporal modulation.

Eventually the perturbation starts to decay back to
the laminar state. This decay is controlled by the two
solutions of the Orr-Sommerfeld equation with s < 0
and σ < 0. Hence, in general, one might expect to see a
linear combination of these two solutions

ψ = A2φ2(y)eiα2x+λ2t +A3φ3(y)eiα3x+λ3t (7)

with the coefficients A2 and A3 determined by the bound-
ary conditions in the region where the trailing tail is

matched to the core region. Since the temporal dynam-
ics in the core region are dominated by nearly harmonic
modulation with frequency 2π/T , it is natural to expect
the mode with n = 1 to dominate over the mode with
n = 0 (i.e., |A2| � |A3|), so the second term in (7) can
be neglected. This is indeed what we find: the first term
alone describes both the streamwise profile of the trail-
ing tail of the numerical solution (cf. Fig. 1) and its
wall-normal profile (cf. Fig. 3(c)).

If we fix t and vary x (or fix x and vary t), the MTSW
becomes a homoclinic orbit that starts and ends at the
laminar state (cf. Fig. 4(a)). The leading tail (aligned
along the Z axis in this projection) describes the tran-
sition from laminar flow to the neighborhood of a corre-
sponding upper branch TSW shown in Fig. 4(b). Since
this TSW is itself unstable on a long domain [22], the
orbit eventually leaves its neighborhood and spirals back
toward the laminar solution, bypassing the lower branch
TSW. This final piece of the orbit corresponds to the
trailing tail.

The group velocity c has been computed simultane-
ously with MTSWs using a matrix-free Newton-Krylov
method [25]. It is natural to ask whether c can instead be
found from linearization. Front propagation theory pre-
dicts that, for a pulled front, the front speed and stream-
wise wavenumber are uniquely defined by a solution to
the following system of equations [26]:

c = i
∂λ

∂α
=

Re(λ)

Im(α)
, (8)

which, in particular, requires ∂σ/∂s = σ/s. For chan-
nel flow, this equation has no solutions for q = 0 in the
range of Re we explored, so the speed of the MTSW is
not selected by a linear mechanism (i.e., the leading tail
corresponds to a pushed front). Therefore, the speed of
MTSW is controlled by the core region, rather than the
leading tail, and hence the drift speed should be different
for different localized solutions. Furthermore, since the
first of the equalities in (8) does not hold, neither does
the conventional relationship c = −∂ω/∂q for the group
velocity. Indeed, the system (6) has a discrete set of so-
lutions, so the variation of the temporal frequency with
spatial wavenumber is meaningless.

It has been noticed previously that the leading and
the trailing tail of streamwise-localized solutions of shear
flows decay spatially at different rates. In particular, for
doubly-localized solutions of channel flow, it was found
that the leading tail decays at a rate that is approxi-
mately constant, while the trailing tail decays at a rate
|s| ∝ Re−1 [12]. We find that the general trends are
similar for MTSW which lack spanwise localization: the
decay rate s1 for the leading tail increases weakly with Re
(cf. Fig. 5(a)), while the decay rate for the trailing tail
decreases as a power law |s2| ∝ Reγ with the exponent
γ = −1.75. In both cases the localization is the strongest
at smaller Re and solutions gradually de-localize as Re
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FIG. 3. The stream function ψ describing the MTSW at Re = 3802: (a) the core region, (b) a segment of the leading edge,
(c) a segment of the trailing edge. In (b) and (c) numerical solution is on the left, analytical solution is on the right, and the
stream function scale is arbitrary. The horizontal and vertical axes correspond to x and y, respectively, with the x coordinate
corresponding to that in Fig. 1. The colormap corresponding to (a) is shown in Fig. 4(b).
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FIG. 4. (a) The homoclinic orbit. MTSW and the corre-
sponding upper and lower branch TSW [10] are shown as
black, blue, and red curves, respectively. The coordinates are
X = v, Y = ∂xv, and Z = u at y = 0 and t-fixed, with the
origin corresponding to laminar flow. (b) The stream function
ψ for the upper branch TSW.

increases. The general agreement suggests that the de-
scription presented here should apply in equal measure
to solutions that have both streamwise and spanwise lo-
calization, although the specific results would depend on
the properties of a particular solution. For instance, for
MTSW, the leading tail does not have spatial modula-
tion and the trailing tail does (cf. Fig. 5(b)), while for
the doubly-localized solution the opposite is true.

To conclude, we have demonstrated that the asymp-
totics of streamwise-localized 2D modulated Tollmien-
Schlichting waves in channel flow are well-described by
solutions to the Orr-Sommerfeld equation with a com-
plex streamwise wavenumber. This approach is capable
of describing both the streamwise and spanwise asymp-
totics of localized solutions for any flow profile U(y), pro-
vided that they are described by either relative equilibria
or relative periodic orbits, regardless of their stability.
Spanwise localization can be described using solutions
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FIG. 5. The spatial decay rate |s| (a) and the wavenumber q
(b) of the tails of MTSW. The data for the leading (trailing)
tail are shown as filled (open) symbols. MTSW is stable for
Re ≤ 3802 and unstable for Re ≥ 4300.

of the Orr-Sommerfeld equation with real α and com-
plex β 6= 0 as shown previously for relative equilibria in
plane Couette flow [9]. For doubly localized solutions, all
components of the velocity are nonzero [12], so, in addi-
tion to the Orr-Sommerfeld equation (4), one also has to
solve the Squire equation (5) for complex α and β. The
streamwise and spanwise velocity components can then
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be computed by solving additional equations

(∂2x + ∂2z )u = ∂zη − ∂x∂yv,
(∂2x + ∂2z )w = −∂xη − ∂y∂zv. (9)

Due to its linearity, the Orr-Sommerfeld equation is
dramatically easier to study analytically compared with
the Navier-Stokes equation. Until recently, the fully non-
linear solutions of Navier-Stokes could be computed and
studied only numerically. The results presented here and
in related studies [9, 11, 12, 19] give us hope that we can
understand some of their properties analytically. In par-
ticular, we found that the group velocity of localized solu-
tions is controlled by a nonlinear mechanism and hence is
not universal, which has important implications for the
structure and dynamics of turbulent bands, spots, and
puffs in various intermittent flows.
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