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Solvable model for spatiotemporal chaos

R. O. Grigoriev and H. G. Schuster*
Condensed Matter Physics 114-36 and Neural Systems Program 139-74, California Institute of Technology, Pasadena, Californ

~Received 6 June 1997; revised manuscript received 22 September 1997!

We show that the dynamical behavior of a coupled map lattice where the individual maps are Bernoulli shift
maps can be solved analytically for integer couplings. We calculate the invariant density of the system and
show that it displays a nontrivial spatial behavior. We also introduce and calculate a generalized spatiotemporal
correlation function.@S1063-651X~98!10001-6#

PACS number~s!: 05.45.1b, 05.50.1q
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I. INTRODUCTION

The study of temporal chaos in low-dimensional system
some of which can be described by low-dimensional m
@1,2#, was extremely beneficial for the understanding of t
bulence. In 1984 coupled map lattices~CMLs! were intro-
duced into the physical literature as a tool for studying s
tiotemporal chaos in spatially extended, i.e., hig
dimensional systems@3#. They consist of spatially couple
low-dimensional maps and represent dynamical systems
are discrete in space and time, but continuous in the s
variable. They serve as models for coupled Josephson j
tions, excitable media, population dynamics, neural dyna
ics, and turbulence@4#.

Although a number of statements regarding the app
ance of coherent structures from spatiotemporal chaos w
proved analytically~see, for instance, the works by Bun
movich and Sinai@5#!, most results in the field have bee
obtained by numerical simulations@4,6#. The study of tem-
poral chaos has greatly profited from the existence of sim
maps such as the Bernoulli shift map and the cat map@2,7#,
which can be solved explicitly~for integer expansion rates!,
thereby making the mechanisms of mixing and tempo
chaos understandable.

Unfortunately, no in-depth investigation of this type h
been provided up to now for the problem of spatiotempo
chaos and coherent structures. The biggest progress
achieved for the class of coupled maps@3#

zi
t115~12«! f ~zi

t!1
«

2
@ f ~zi 11

t !1 f ~zi 21
t !#, ~1!

with piecewise-linear local mapsf (zi
t).

In particular, Keller et al. @8# have shown for
f (x)5(2x)mod 1 that the dynamics of the CML~1! with i
P@1,N# is ergodic and the system possesses an invar
measure for sufficiently small coupling«. However, for cer-
tain larger values of coupling the dynamics becomes no
godic. Several specific results forN52 were also obtained

The casef (x)5(ax)mod 1 for arbitrary expansion ratesa
was considered in the limit of an infinite latticei
P(2`,`) by Diks et al. @9#, who have calculated the den
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sities of the information dimension and information entro
and also suggested that the evolution equation~1! could be
solved for certain values ofa and « if rewritten in the
equivalent form

xi
t115 f S ~12«!xi

t1
«

2
~xi 11

t 1xi 21
t ! D , ~2!

using the change of variablesxi
t5 f (zi

t).
In the present paper we will actually solve a more gene

evolution equation, which gives the solution to the CML~2!
as well as its versions for spatial coupling of arbitrary ran
and calculate the invariant measure of respective syste
We will also obtain the conditions that determine when t
evolution of the system is ergodic and when the ergodic
breaks down.

To make our approach for the high-dimensional syst
more transparent we will start by calculating in Sec. II t
invariant density and a temporal correlation function for t
single Bernoulli shift map. In Sec. III we will show that
wide class of finite-dimensional evolution equations, whi
includes the CML~2! as a special case for certain values
the coefficientsa and «, can be solved and we will also
calculate the invariant density for any such evolution eq
tion. We will then use the general results to calculate
spatial and spatiotemporal correlation functions for the CM
~2!. Finally, in Sec. IV we will discuss our results and ind
cate directions of further research.

II. PROPERTIES OF A SINGLE BERNOULLI SHIFT MAP

First we recall that the single map

xt115~axt!mod 1 ~3!

can be solved asxt5(atx0)mod 1 because

x25$a@~ax0!mod 1#%mod 15$a@ax02k0#%mod 1

5~a2x0!mod 1, ~4!

where k0 is an integer that represents the action of t
modulo function. For the last equality sign in Eq.~4! to hold
we requirea to be an integer such thatak0 becomes again an
integer, which can be dropped within the last modulo fun
tion.
388 © 1998 The American Physical Society
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57 389SOLVABLE MODEL FOR SPATIOTEMPORAL CHAOS
Since the modulo function confines the variablext to a
circle, we could view the Bernoulli shift map as a linear m
xt115axt where the variables exist on a unit circle, i.e., on
1-torus. Similarly, we shall see below that we can view o
coupled map system as a linear map acting on variables
fined to anN-torus, whereN is the number of lattice sites.

The invariant densityr(x) of the simple Bernoulli shift
map measures the distribution ofx values on the attracto
generated by the map and is well known to be a constan@2#
~here and below in this section we assumeuau.1!. We can
obtain this result by noting thatr(x) is defined on a unit
circle, i.e., it is periodic inx and therefore can be represent
as a Fourier series

r~x!5(
k

r̂~k!e2p ikx, ~5!

wherek takes only integer valuesk50,61,62,... .
The densityr t(x) of the points on the attractor evolve

from an initial distributionr0(x) according to the Frobenius
Perron equation@2#

r t~x!5E
0

1

dx8d„x2~atx8!mod 1…r0~x8!, ~6!

and since the map~3! is mixing, the invariant density is
given by the long-time limitr(x)5 limt→`r t(x).

In order to solve Eq.~6! we use Eq.~5! and the fact that
the Bernoulli shift map becomes a linear map on a tor
such that

exp$2p i @~atx!mod 1#%5exp~2p iatx!, ~7!

to obtain

r̂ t~k!5 r̂0~atk!. ~8!

If we make the reasonable assumption that the initial dis
bution r0(x) is nonsingular, then limk→6`r̂0(k)50. This
means that all Fourier coefficientsr̂ t(k) in Eq. ~5! tend to
zero in the infinite-time limit, except the one that belongs
k50. Since

r̂0~0!5E
0

1

dx r0~x!51, ~9!

this yieldsr̂(k)5dk,0 andr(x)51.
In a similar fashion we can now define and calculate

time correlation function on the 1-torus. Due to the nontriv
topology of the state space the usual time correlation fu
tion

^x0xt&5E
0

1

dx r~x!x ft~x!, ~10!

where the time evolution ofx is given by the mapf (x),
might produce confusing results. It is therefore advantage
to introduce the time correlation function

G~ t !5E
0

1

dx0r~x0!e2p i ~x02xt!, ~11!
r
n-

s,

i-

e
l
c-

us

where

xt5~atx0!mod 1, ~12!

which respects the fact that the variablex is an angular vari-
able on a torus@10#. Sincer(x)51 for uau.1, Eqs.~7! and
~11! yield

G~ t !5E
0

1

dx r~x!e2p i ~12at!x5d t,0 , ~13!

i.e., the correlation vanishes for finite times.
In the following section we will demonstrate wha

changes have to be made in order to compute in a fas
similar to that above the solution to the dynamical equatio
the invariant density, and the time correlation function f
our coupled map lattice.

III. LATTICE OF COUPLED BERNOULLI SHIFT MAPS

A. Evolution equation

For the Bernoulli shift mapf (x)5(ax)mod 1 the time
evolution for the variablesxi

t of the CML becomes, accord
ing to Eq.~2!,

xi
t115S aF ~12«!xi

t1
«

2
~xi 11

t 1xi 21
t !G Dmod 1. ~14!

If we introduce two new parametersm and n, such that
a5m12n and «52n/(m12n), then the equation of mo
tion for the coupled map system can be written in the co
pact form

xi
t115S (

j
Ai j xj

t Dmod 1, ~15!

where the coupling matrixA has elements

Ai j 5md i , j1n~d i ,i 111d i ,i 21!. ~16!

This model was independently considered in the limit of
infinitely large lattice by Dikset al. @9#, who recognized that
the evolution equation~15! can be solved analytically fo
arbitrary integer parametersm and n @such that both
(12«)a anda«/2 take integer values# and used this fact to
show that the components of the statexi

t represent an en
semble of independent identically distributed random va
ables with the uniform probability density on@0,1!. This is
true, however, only for certain combinations ofm andn. In
general, the variablesxi

t are not independent, i.e., there is
nontrivial coherent structure, although more sophistica
methods are necessary to show this by calculating the na
invariant measurem~x!, which defines the invariant densit
r~x! of the system throughdm(x)5r(x)dx @11#. In particu-
lar we will find that in certain cases the system might not
ergodic, and even if it is, the invariant measure might
nonconstant.

Below we present the solution of a more general probl
of calculating an invariant measure of the system~15! of
arbitrary lengthN for a wide class of matricesA. Indeed, we
can free ourselves from the specific form~16! for Ai j , which
was physically motivated by the nearest-neighbor latt
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390 57R. O. GRIGORIEV AND H. G. SCHUSTER
model ~14! and show that Eq.~15! can be solved forany
matrixA that hasinteger valued elements Ai j . In order to see
this we write Eq.~15! in vector notation as

xt115~Axt!mod 1, ~17!

wherext5(x1
t ,...,xN

t ) and the modulo is taken for each com
ponent of the vectorAxt. Then we obtain by iterating from
the initial condition

xt115~Axt!mod 15Axt2kt, ~18!

wherekt is a vector with integer components, which repr
sents the action of the modulo function. This yields

xt125~Axt11!mod 15~A@Axt2kt# !mod 1

5~AAxt2Akt!mod 15~A2xt!mod 1, ~19!

where the last equality sign holds only because all elem
of the matrixA are integers, such thatAkt is a vector with
integer components, which can be dropped under the
modulo function. Since Eq.~19! holds for anyt, we obtain
the closed-form solution as a function of the initial value

xt5~Atx0!mod 1. ~20!

Equation ~19! shows that we can solve not only th
coupled map lattice problem~14!, but all linearly coupled
systems where the coupling occurs via a matrixA with inte-
ger elementsAi j and the nonlinearity is provided by th
modulo function. The solution can be obtained by first so
ing the linear problem, i.e., by obtainingAtx0 and then tak-
ing the modulo, which is the same as having the linear m
acting on anN-torus in analogy to the famous Arnold c
map in two dimensions@7#.

Next we investigate the invariant density and the s
tiotemporal correlation function of the CML. The first qua
tity gives us information about the measurable time-avera
spatial structures in the system and the second one tel
about the measurable spatiotemporal structures.

B. Invariant density

Similarly to the one-dimensional case, the invariant d
sity r~x! yields the distribution of points on the attract
generated by the mapxt115(Axt)mod 1. Assuming that the
map is mixing, it could be obtained by starting from an in
tial distributionr0(x) as the infinite-time limit ofr t(x) in the
Frobenius-Perron equation

r t~x!5E dx8d„x2~Atx8!mod 1…r0~x8!. ~21!

Although the mixing property might not hold for every m
trix A with integer elements, we expect the violation of th
property to be an exception rather than the rule. In particu
it was proved@8# that the map~14! possesses an invarian
mixing measure for

uau.2, «, «̄ , ~22!

where 0, «̄ ,1 is some constant~it was suggested that thi
result will in fact hold for alluau.1!.
-
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-

p

-
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Since all quantities involved in Eq.~21! are periodic on an
N-torus, the Fourier decomposition ofr t(x) contains only
wave vectorsk with integer components (kPZN):

r t~x!5(
k

r̂ t~k!e2p i k•x. ~23!

By using theN-dimensional generalization of the equali
~7!

exp$2p ik•@~Atx!mod 1#%5exp$2p i @~At!Tk#•x%,
~24!

one obtains from Eqs.~21! and ~23!

r̂ t~k!5 r̂0
„~At!Tk…. ~25!

If the initial distribution r0(x) is nonsingular, all Fourier
coefficients vanish for large values of the wave vector:

lim
uku→`

r̂0~k!50. ~26!

For a completely expanding map, where all eigenvalu
of the matrix A have an absolute value larger than on
limt→`(At)Tk5` for eachkÞ0 and the only nonvanishing
Fourier component becomes

r̂0~0!5E dxr0~x!51, ~27!

which yields a constant invariant density

r~x!51. ~28!

This result is completely analogous to the single map ca
However, we may obtain different results for the invaria
density if there are nonexpanding directions in the ph
space.

Indexing the stable (ulu,1), central (ulu51), and un-
stable (ulu.1) eigenvalues and right~left! eigenvectorse
( ẽ ) of the matrixAT with indicess, c, andu, respectively,
we have

~At!Tk5 (
p5s,c,u

lp
t ~ ẽp

•k!ep. ~29!

According to the above, we will obtain results that diff
from the trivial expanding case only if there exists at le
onekÞ0 such that its components along the unstable dir
tions are all zero, i.e., it is contained in the direct sum of
stable and central manifolds (kPWc

% Ws) of the fixed point
k50 of the ‘‘conjugate’’ map

kt115ATkt. ~30!

On the other hand, Eqs.~25! and ~29! tell us that it is not
enough to have central or contracting eigenvalues in orde
get a nonconstant invariant density.

Let us first consider the case with a single stable direct
es and no central directions. Since all componentski of a
vectork are integers, it is contained within the stable ma
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57 391SOLVABLE MODEL FOR SPATIOTEMPORAL CHAOS
fold Ws only if there exists a scalarn such thatnk5es. This
in turn means that the components$e1

s ,...,eN
s % should be

mutually rational, i.e.,

e1
s :e2

s :•••:eN
s 5k1 :k2 :•••:kN . ~31!

An example where we have one contracting and one
panding direction is the cat map

A5S 1 1

1 2D . ~32!

Although the eigenvalue corresponding to the contracting
rection is ls5(32A5)/2,1, this map still has a constan
invariant density because the components of the eigenve
es5(2,12A5) belonging tols have a nonrational ratio~see
Fig. 1! leading to

lim
t→`

r̂ t~k!5dk,0 . ~33!

Generally, in order to get a nonconstant invariant den
our model must possess a central and/or a stable mani
i.e., Wc

% WsÞ$0%, whose direct sum in turn should conta
at least one vector with mutually rational components. Ev
vector kPZN such thatkP(Wc

% Ws)\Wc is pulled in the
long-time limit into the origin, according to Eq.~29!:

lim
t→`

r̂ t~k!5 lim
t→`

r̂0
„~At!Tk…5 r̂0~0!51. ~34!

Similarly, vectorskPZN such thatkPWc are either left in-
variant under the action of the map~30!, and then

r̂ t~k!5 r̂0~k!5e22p ik•x0
, ~35!

or change sign after each iteration, giving

r̂ t~k!5H r̂0~k!5e22p ik•x0
, t even

r̂1~k!5e22p ik•x1
, t odd.

~36!

FIG. 1. Cat map: None of the integer-component wave vec
lies on the stable manifoldWs of the fixed pointk50.
x-

i-

tor

y
ld,

y

As a result, the definition of the invariant density has to
adjusted to read

r~x!5
1

2
lim
t→`

@r t~x!1r t11~x!#

5
1

2 (
k

lim
t→`

@r t~k!1r t11~k!#e2p ik•x. ~37!

The invariant density will contain only nonvanishing Fouri
components with wave vectorskPWc

% Ws:

r~x!5 (
kP~Wc

% Ws!\Wc
e2p ik•x1

1

2 (
kPWc

~e2p ik•~x2x0!

1e2p ik•~x2x1!!. ~38!

Using the fact that anykPZNù(Wc
% Ws) can be repre-

sented as a linear combination of a~usually small! number of
basis vectorsf j , j 51,...,M , with integer coefficientspj , i.e.,
k5( j pj f

j , we can rewrite Eq.~38! as

r~x!5 )
j 5c,s

(
pj

e2p ip j f
j
•x2)

j 5c
(
pj

e2p ip j f
j
•x

1
1

2 (
t50

1

)
j 5c

(
pj

e2p ip j f
j
•~x2xt!, ~39!

where the basis vectors belonging toWc andWs are denoted
as f c and f s, respectively. Summing up, we finally obtain

r~x!5 )
j 5c,s

d„~ f j
•x!mod 1…2)

j 5c
d„~ f j

•x!mod 1…

1
1

2 (
t50

1

)
j 5c

d„@ f j
•~x2Atx0!#mod 1…. ~40!

This result is quite interesting and revealing. First of a
we see that the local and global properties of the sys
uncouple in the Fourier representation. The nontrivial str
ture appears as a combination of those properties, when
intersection of the ‘‘marginally stable’’ manifoldWc

% Ws of
the fixed pointk50, with the setZN, which is the reflection
of the topology, contains more than one point.

Next we note that the evolution of the system is not
ways ergodic. In particular, if the set of basis vectorsf c is
not empty ~which requires nonhyperbolicity in the firs
place!, the system has a continuum of ergodic compone
whose location is determined by the initial condition. Ea
ergodic component is contained in a finite union of su
spaces ofRN, which are perpendicular to every basis vec
f c, in exact agreement with the statement, proved ana
cally by Keller et al. ~see Theorem 2 in@8#! for a52 and
«P@0,1#. An example of such situation is presented by t
CML ~14!, as we will see below.

If the set of basis vectorsf c is empty, e.g., for a hyper
bolic system, we find the unique invariant density@giving the
natural measurem~x!#, in the form

rs
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392 57R. O. GRIGORIEV AND H. G. SCHUSTER
r~x!5)
j 5s

d„~ f j
•x!mod 1…, ~41!

which reduces to Eq.~28! if the set of f s is empty as well.
Otherwise, a nonconstant invariant density results, leadin
the existence of nontrivial spatiotemporal structures in
system. We should note, however, that the structure of
invariant density~41! implies that high-order correlations ar
expected. The widely used pair correlation functions the
fore might not indicate any coherent structure, even if
latter is present.

C. Nearest-neighbor coupling

Up to now our conclusions have been completely gen
for any coupling matrixA with integer elements. Let us now
consider the condition~34! in more detail for our one-
dimensional nearest-neighbor model~14!. The corresponding
matrix ~16! can be diagonalized by Fourier transformation
the space variablesi , leading for periodic boundary cond
tions to eigenvalues

lq5m12n cos~q! ~42!

and the corresponding eigenvectors

ec
q5N21

„cos~q!,cos~2q!,...,cos~Nq!…,

es
q5N21

„sin~q!,sin~2q!,...,sin~Nq!…, ~43!

whereq52pp/N andp50,...,N/2 ~for N even!.
Of these only a few have mutually rational componen

For instance, both cos(q):1 and sin(2q):sin(q) are rational
only if cos(q) is rational, which immediately restricts th
allowed wave vectorsq52pp/N to a set of five values
q* 50,p/3,p/2,2p/3,p. Eachq* generates basis vectorsf s

if ulq* u,1 andf c if ulq* u51:

f 05~1,...,1!,

f1
p/35~1,21,22,21,1,2,...,2!,

f2
p/35~21,22,21,1,2,1,...,1!,

f1
p/25~0,21,0,1,...,1!,

f2
p/25~1,0,21,0,...,0!,

f 1
2p/35~21,21,2,...,2!,

f 2
2p/35~21,2,21,...,21!,

f p5~21,1,...,1!. ~44!

Rationality of cos(q* ) in not an unexpected result, e.g
choosing cos(q* )52m/2n results in the eigenvaluelq* 50,
according to Eq.~42!, which requires

~ f•xt!mod 150 ;t.0, ~45!
to
e
e

-
e

al

.

where we definedf5kq* eq* with kq* 5N if q* 50,p/2,p
and 2N otherwise. This in turn requires r(x)
;d„(f•x)mod 1…, which is seen to be the case by compari
with Eq. ~41!.

Similarly, the marginal eigenvalueslq* 561 also require
the cosine to be rational: cos(q* )5(2m61)/2n. It can be
seen that this is again consistent with the analytical resul
Keller et al. ~Theorem 2 of@8#!. The theorem states that th
marginal value of the Lyapunov exponentlp51 for p5N/r
or p5N(r 21)/r , i.e.,q* 52p/r „or q* 52p(r 21)/r if we
allow q to vary in the interval@p,2p#… with r 52, 3, 4, or 6,
is a sufficient condition for the existence of a continuum
ergodic components.

Since 2 cos(q* ) can only take values 0,61, and62, the
maximal number of basis vectors for the CML~15!, ~16! is
M56 and is achieved form50, n561, andN>12, when
both the number of ‘‘central’’ basis vectorsf c and the num-
ber of ‘‘stable’’ basis vectorsf s reach the maximum value
of four and two, respectively.

From now on, however, we will restrict the discussion
the physically interesting case of ergodic dynamics. Th
there is a unique invariant density, given by Eq.~41! with
M<2. In order to numerically check the consistency of o
results and to calculate various correlation functions, it
useful to define the one-dimensional projection of the inva
ant densityr~x! on a chosen directiong:

rg~s!5E
I N

d~s2g•x!r~x!dx, ~46!

where I N denotes the unitN-dimensional cube@0,1#N. For
example, ifgi5d i j , Eq. ~46! gives the distribution of thej th
component of the stater(xj )51 in complete agreement with
the result of@9#.

If g coincides with one of the basis directions, i.e.,g5nf l

for somel , the projection

rg~s!5E
I N

d~s2nf l
•x!)

j 51

M

(
pj

d~pj2f j
•x!dx

5(
p

Dpd~s2np! ~47!

becomes singular: We get a series ofd functions with an
envelope

Dp5E
I N

d~p2f l
•x!)

j Þ l
(
pj

d~pj2f j
•x!dx. ~48!

Otherwise, the projection~46! is a continuous, nonsingula
function of parameters. In other words, only the projection
on the directions defined by the basis vectorsf j is singular.

In particular, the eigenvectoreq defines a basis direction
f j if and only if the projection~46! on this eigenvector@we
definerq(s)5rg(s) for g5eq#,

rq~s!5E
I N

d~s2eq
•x!)

j 51

M

(
pj

d~pj2f j
•x!dx, ~49!

is singular. This implies thateq5nqf j for somej .
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57 393SOLVABLE MODEL FOR SPATIOTEMPORAL CHAOS
One can trivially verify that the projection~49! has the
average

sq5E srq~s!ds5
1

2
dq,0 ~50!

and the dispersion given by

sq
25E ~s2sq!2rq~s!ds5

1

24N
~11dq,01dq,p! ~51!

for all qÞq* and almost always forq5q* . The few excep-
tions are all specific to short lattices: ForN52 andm52n
we obtain

s0
25

1

12
, sp

2 50, ~52!

while N52 andm522n yield

s0
250, sp

2 5
1

12
; ~53!

N53 with m5n gives

s0
25

1

12
, s2p/3

2 50 ~54!

and, finally,N54 with m50 and arbitraryn gives

s0
25sp

2 5
1

24
, sp/2

2 50. ~55!

It is interesting to note, however, that forN.4 the disper-
sion is given by formula~51! even for the values of param
eters corresponding to nonergodic dynamics.

As expected, numerically calculating the projectionrq(s)
on the stable and unstable directions~43!, we get a singular
distribution only forq5q* @Fig. 2~b!#, provided the respec
tive eigenvector is stable (ulqu,1). Otherwise a smooth
Gaussian-like distribution is obtained@Fig. 2~a!#.

Indeed, one can easily see that forM50,

rq~s!5E
I N

d~s2eq
•x!dx ~56!

gives the probability distribution for the sums of N indepen-
dent weighted random variablesxi , each uniformly distrib-
uted on@0,1#. The weights are given by the coordinates
the eigenvectorei

q . In the large length limit one can appl
the central limit theorem@12#, which would yield the distri-
bution for the sums, approaching a Gaussian asN→`.

For M.0 Eq. ~49! still gives the probability distribution
for the sum ofN weighted random variables. However, no
the variables are not independent, but correlated through
product ofM d functions~which can be simply interpreted a
functional dependences ofM of the variables on the rest!. In
the large length limit this correlation can be ignored~as long
as M!N! and the integral in Eq.~49! will still approach a
Gaussian. A similar argument for the integral in Eq.~48!
shows that both the continuous distribution and the envel
f

he

e

of the singular distribution~49! become Gaussian forN→`,
independent of the number of basis vectorsf s:

rq~s!'H nq

sq
fS s2sq

sq
D d~s2nqp!, if ' j :eq5nqf j

1

sq
fS s2sq

sq
D , otherwise,

~57!

wheref(t)5(2p)21/2 exp(2t2/2) is the normalized Gauss
ian andnq5kq

21 .

D. Spatiotemporal correlations

In the case of coupled map lattices the use of the stand
two-point spatial correlation function is rather well mot
vated and is arguably the easiest way to uncover the
correlations inherent in the system. The correlation funct
is trivially calculated to yield

C~r !5^xixi 1r&2^xi&^xi 1r&5
1

12
d r ,0 ~58!

for the completely expanding case withr(x)51 @here ^ &
denotes the average taken withr~x!#.

If there are contracting directions, we rewrite Eq.~58! as

FIG. 2. Projection of the invariant densityrq(s2sq) for ~a! q
Þq* , arbitrary lq as well asq5q* , ulqu.1 and ~b! q5q* ,
ulqu,1. We usedN532.
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C~r !5(
q

~ss,q
2 1sc,q

2 !eiqr5(
q

S ss,q
2 1sc,q

2 2
1

12NDeiqr

1
1

12
d r ,0 , ~59!

wheress,q5sc,q5sq for all q exceptss,05ss,p50. Since
sq

25(11dq,01dq,p)/24N for all qÞq* ,

C~r !5
1

12
d r ,01S s0

22
1

12ND1S sp
2 2

1

12ND ~21!r

14 (
q5p/3,p/2,2p/3

S sq
22

1

24ND cos~qr !. ~60!

This reduces to ad correlation @which coincides with the
result ~58! obtained forr(x)51# in all but a few special
cases described above, whensq

2Þ(11dq,01dq,p)/24N. For
instance, choosingm50 yields, forN54, the invariant den-
sity

r~x!5d~x12x3!d~x22x4! ~61!

and according to Eqs.~55! and ~60!

C~r !5
1

24
1

~21!r

24
5H 1

12
if r 50,2

0 if r 51,3.

~62!

Since the invariant density, although being nontrivi
does not tell us much about the spatiotemporal structure
the system, next we introduce a spatiotemporal correla
function Gi(r ,t), which is a straightforward generalizatio
of the time correlation function~11!:

Gi~r ,t !5E dx0r~x0!e2p i ~xi
0
2xi 1r

t
!. ~63!

By expandingr~x! into Fourier series we obtain, in analog
to Eq. ~25!,

Gi~r ,t !5(
k

r̂~k!)
j 51

N

d~kj2Ai 1r , j
t 1d i , j !. ~64!

Since only the nonvanishing Fourier componentsr̂(k* )51
~wherek* 5( lnl f

l! of the invariant density~41! contribute,
Eq. ~64! reduces to

Gi~r ,t !5 (
n1 ,...,nM

)
j 51

N

dS (
l 51

M

nl f j
l 2Ai 1r , j

t 1d i , j D . ~65!

In a translationally invariant systemGi(r ,t) does not depend
on i , so we drop the index and fixi ~set i 51 to be specific!.

It can be easily verified that the correlation~63! is short
ranged in both space and time. First we note that it vanis
if the vectorkr

t with componentskj5A11r , j
t 2d1,j does not

lie on the stable manifoldWs. According to Eq.~29!,

A11r , j
t 5l1

t Fe11r
1 ej

11S l2

l1
D t

e11r
2 ej

21••• G , ~66!
,
in
n

es

wherel1 is the largest andl2 the next largest eigenvalu
ande1 ande2 are the respective eigenvectors. For increas
t the vectorkr

t asymptotically approaches the direction d
fined by e1 and therefore cannot lie on the stable manifo
for t>t, wheret is some finite~and typically small! integer.

On the other hand, fort50 we have

G~r ,0!5 (
n1 ,...,nM

)
j 51

N

dS (
l 51

M

nl f j
l 2d11r , j1d1,j D ~67!

and one can easily see that equal-time spatial correlat
vanish for sufficiently large lattices. Indeed, in the trans
tionally invariant case any possible basis vectors~44! are
periodic in space with periods 1, 2, 3, 4, or 6 and any lin
combination of these will also be periodic with period of
most 12. Since the vector with componentskj5d11r , j2d1,j
is not periodic forrÞ0, the maximal size of the system wit
nontrivial correlation is limited toN512. Again, considering
the CML ~14! with m50 andN54 as an example, we ob
tain f 15(0,21,0,1) andf 25(1,0,21,0) as the basis vector
and consequently

G~r ,0!5H 1 if r 50,2

0 if r 51,3,
~68!

i.e., we retrieve the result~62!.
The results obtained above for two different two-po

correlation functions should serve as a warning for us
low-order correlations as an indicator of the existence of
herent structures. Although our model is admittedly rath
special, we might suggest that certain types of coher
structures will generically only transpire through the hig
order correlations such that the order is comparable to
number of degrees of freedom of the dynamical system c
sidered.

IV. DISCUSSION

To summarize, we have shown that the solution for
dynamical behavior of a lattice of Bernoulli maps, which a
coupled by a matrixA with integer coefficients, can be give
in the closed form asxt5(Atx0)mod 1, i.e., the dynamica
behavior of the coupled map system can be described by
repeated action of a linear mapAtx0 on variables that are
confined to anN-torus. This picture explains that the esse
tials of the dynamical behavior are dictated by the eigenv
ues and eigenvectors ofA.

We have also calculated the invariant density and a nu
ber of correlation functions, and it is instructive to compa
our results with the general results obtained by Bunimov
and Sinai@5#, who proved that for sufficiently small couplin
~in our case determined by the parameter«! certain expand-
ing coupled map systems with finite-range coupling poss
an invariant measurem~x!, whose finite-dimensional distri
butions are absolutely continuous. Furthermore, it w
proved that the time and space correlation functions de
exponentially~not slower than exponentially, to be exact!.

Indeed, small coupling in our model means that there
no contracting directions and as a result we have a c
pletely expanding system with the unique invariant meas
that has constant densityr(x)51. For larger coupling, the
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invariant measure might still exist, but might not be abs
lutely continuous due to the fact that large coupling oft
causes the appearance of contracting directions even i
isolated local mapsf (x) are expanding. For certain values
control parameters, however, the invariant measure di
pears, giving way to the continuum of ergodic componen
selected by the choice of initial conditions. Although o
model suggests that the existence of the central manifol
the crucial ingredient in the violation of ergodicity, it re
mains to be seen whether it constitutes the necessary co
tion in general.

We find that the invariant densityr~x! of the system~15!
displays Fourier coefficients that are different from zero, i
r~x! is nonconstant, whenever the stable manifold of the z
wave vector contains a nonempty basis of directionsf j with
mutually rational components, generating an infinite asym
totically contracting set of wave vectors. For neare
neighbor couplings in a one-dimensional lattice@given by the
matrix ~16!# the maximal number of such basis vectors is
~two for ergodic dynamics!.

The standard spatial correlation functionC(r ) for the
model with nearest-neighbor couplings is given
C(r )5(1/12)d r ,0 for almost any combination of control pa
rameters. A few special cases exist, however, for sufficie
small lattices, where the spatial correlations are different.
can interpret this result by noting that the order of the cor
lation function, i.e., 2, is indeed comparable to the length
the lattice with nontrivial correlations, i.e.,N<4. Neverthe-
less, C(r ) always vanishes at sufficiently large distanc
which is consistent with@5#.

Furthermore, it is rather interesting to note that both
Lyapunov spectrum and~for sufficiently large lattices! the
spatial correlation function not only can be calculated
actly, but do not depend on the initial conditions for arbitra
values of system parameters, even when the dynamics o
system is not ergodic. Such dynamical invariants, altho
not universal, should be very helpful in describing non
godic dynamical systems.

The invariant density and the spatial correlation funct
of the model considered here display little structure co
pared to the Lyapunov spectrum, which is, for the near
neighbor coupling, given byLq5 lnum12n cos(q)u. This re-
sult shows that the time-averaged spatial behavior isnot
simply a straightforward reflection of the Lyapunov spe
trum ~see related works listed in@13#!.

We have also calculated the measurable spatiotemp
correlation functionG(r ,t) for the translationally invarian
model and shown that it too is short ranged in both space
time for arbitrary coupling matrixA. This suggests tha
s
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space and time correlations can decay exponentially or fa
even in the systems with global coupling.

Summing up the main points, we might suggest that th
exists a class of spatiotemporally chaotic systems that
play no coherent structures in certain regions of param
space. However, even if the coherent structure is present
spatiotemporal correlations might decay subexponentially
even showd correlations. In the latter case higher-order co
relation functions are necessary to discover the cohe
structure.

Furthermore, we can suggest that the dynamics of cer
spatiotemporally chaotic systems could lose the ergodi
property on some hypersurface of the parameter space. W
this happens, the Lyapunov spectrum and finite-dimensio
spatiotemporal correlation functions could provide us w
initial-condition-independent information about the syste
dynamics.

Let us finally point out several directions of further r
search. One open problem is the extension of our result
higher dimensions and to couplings that have a longer ran
In the one-dimensional case the eigenvectors remain
valid for longer-ranged couplings; only the eigenvalu
change. This means that a model with a long but finite ra
will have no more structure in the invariant density than t
short-ranged model. This is of course a peculiarity of t
Bernoulli shift map, but should again be taken as a warn
for making conclusions from the spatial range of the co
pling onto the observable spatial patterns.

Although our solution for the dynamics and the corre
tion functions does hold for general dimensions, it would
interesting to see what the restrictions on the wave vec
that generate the basis of the invariant density look like
two and three dimensions. The study of the model with n
integer coupling and expansion rates using a sort of per
bation technique around an exact solution also seems pr
ising.

Finally, one could investigate the dynamical behavior o
system, whose time dependence is givena priori by Eq.~20!
for matricesA with nonintegerelements. By doing so one
will lose the property of the original map that relation~17!
holds step by step, although the trajectories generated by
~20! are well defined.
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