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Solvable model for spatiotemporal chaos
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We show that the dynamical behavior of a coupled map lattice where the individual maps are Bernoulli shift
maps can be solved analytically for integer couplings. We calculate the invariant density of the system and
show that it displays a nontrivial spatial behavior. We also introduce and calculate a generalized spatiotemporal
correlation function[S1063-651X98)10001-9

PACS numbeps): 05.45+b, 05.50+q

I. INTRODUCTION sities of the information dimension and information entropy
and also suggested that the evolution equationcould be
The study of temporal chaos in low-dimensional systemssolved for certain values o and e if rewritten in the
some of which can be described by low-dimensional mapquivalent form
[1,2], was extremely beneficial for the understanding of tur-
bulence. In 1984 coupled map lattic6SMLs) were intro- 1 L€ ‘
duced into the physical literature as a tool for studying spa- i =fl (1—e)x+ §(Xi+1+xi71) ' @
tiotemporal chaos in spatially extended, i.e., high-
dimensiona] systemE3]. They consist of spa_tially coupled using the change of variables=f(Z)).
low-dimensional maps and represent dynamical systems that | " o present paper we will actually solve a more general

are discrete in space and time, but continuous in the statg ,,tion equation, which gives the solution to the CKa)

variable. Th?( servg_ as modIeI§ fordcoupl_ed Josephlsgn JUNGs well as its versions for spatial coupling of arbitrary range,
tions, excitable media, population dynamics, neural dynamz,q cajculate the invariant measure of respective systems.

ics, and turbulenc@4]. _ We will also obtain the conditions that determine when the

Although a number of statements _regardlng the appeatg,o|ytion of the system is ergodic and when the ergodicity
ance of coherent structures from spatiotemporal chaos Wekgaaks down.
proved analytically(see, for instance, the works by Buni- 14 naye our approach for the high-dimensional system
movich and Sina[5]), most results in the field have been e transparent we will start by calculating in Sec. Il the
obtained by numerical simulatiorié,]. The study of tem- i, 4 ant density and a temporal correlation function for the
poral chaos has greatly profited from the existence of S'mplgingle Bernoulli shift map. In Sec. Il we will show that a
maps such as the Bernoulli shift map and the cat f2ap,

. - . ; wide class of finite-dimensional evolution equations, which
which can be solved explicitlyfor integer expansion ratgs

g X it ncludes the CML(2) as a special case for certain values of
thereby making the mechanisms of mixing and temporalhe coefficientsa and &, can be solved and we will also
chaos understandable.

¢ I in-depth i — £ thi h calculate the invariant density for any such evolution equa-
Unfortunately, no in-depth investigation of this type has, “\we will then use the general results to calculate the

. _ i
been provided up to now for the problem of spatlotemporaé atial and spatiotemporal correlation functions for the CML
chaos and coherent structures. The biggest progress wey rinaly, in Sec. IV we will discuss our results and indi-

achieved for the class of coupled mdf3$ cate directions of further research.

t+1 t t t
i 1 4+ — t + )1, 1 ) F A R
Z —( s)f(Zi) Z[f(Z|+1) f(Z| 1)] ( ) Il. PROPERTIES O SINGLE BERNOULLI SHIFT MAP

with piecewise-linear local mapz) First we recall that the single map
i)

In particular, Keller etal. [8] have shown for Xt 1= (axtymod 1 3)
f(x)=(2x)mod 1 that the dynamics of the CM(1) with i
e[1N] is ergodic and the system possesses an invariant; pe solved as =(a'x%)mod 1 because
measure for sufficiently small coupling However, for cer-
tain larger values of coupling the dynamics becomes noner- x2={a[(ax®)mod 1]}mod 1={a[ax’—k°]}mod 1
godic. Several specific results fbf=2 were also obtained.
The casd (x) =(ax)mod 1 for arbitrary expansion ratas =(a?x%)mod 1, 4
was considered in the limit of an infinite latticé
e (—,») by Diks et al. [9], who have calculated the den- where k° is an integer that represents the action of the
modulo function. For the last equality sign in Eg) to hold
we requirea to be an integer such thak® becomes again an
*Permanent address: Institute ftheoretische Physik, Universita  integer, which can be dropped within the last modulo func-
Kiel, Olshausenstrasse 40, D 24098 Kiel, Germany. tion.
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Since the modulo function confines the variaklfeto a  where
circle, we could view the Bernoulli shift map as a linear map . o
xt*1=ax' where the variables exist on a unit circle, i.e., on a x'=(ax’)mod 1, (12
1-torus. Similarly, we shall see below that we can view our

coupled map system as a linear map acting on variables Cor\{\{hlch respects the fact that the variaklés an angular vari-

fined to anN-torus, whereN is the number of lattice sites. ?ﬂ? qnlg toru$10]. Sincep(x) =1 for [a|>1, Egs.(7) and
The invariant density(x) of the simple Bernoulli shift yie

map measures the distribution wfvalues on the attractor 1 _ .

generated by the map and is well known to be a con$&int G(t)= f dx p(x)e2mL- =g, o, (13

(here and below in this section we assufag>1). We can 0

obtain this result by noting thai(x) is defined on a unit

circle, i.e., it is periodic irx and therefore can be represented

as a Fourier series

i.e., the correlation vanishes for finite times.

In the following section we will demonstrate what
changes have to be made in order to compute in a fashion
similar to that above the solution to the dynamical equations,
p(x)zz p(k)e2mkx, (5)  the invariant density, and the time correlation function for

k our coupled map lattice.

wherek takes only integer valuds=0,=1,+2,... .

The densityp'(x) of the points on the attractor evolves
from an initial distributionp®(x) according to the Frobenius- A. Evolution equation
Perron equatiof2]

Ill. LATTICE OF COUPLED BERNOULLI SHIFT MAPS

For the Bernoulli shift mapf(x)=(ax)mod 1 the time

1 evolution for the variableg; of the CML becomes, accord-
pt(x):j dx’ 8(x—(a'x")mod 1p°(x"), (6) ing to Eq.(2),
0

and since the mag3) is mixing, the invariant density is xit=|a
given by the long-time limitp(x) =lim,_,.p'(X).

In order to solve Eq(6) we use Eq(5) and the fact that |t we introduce two new parameters and n, such that
the Bernoulli shift map becomes a linear map on a torusg— m+2n and e =2n/(m+2n), then the equation of mo-
such that tion for the coupled map system can be written in the com-

exp{27i[(a'x)mod 1]}=exp(2mia'x), @) pact form

(1= )X+ 5 (K14 y) )mod 1. (14

to obtain xTl=

; Ai,-x}) mod 1, (15)
p'(k)=p°(a'k). 8

If we make the reasonable assumption that the initial distri-
. . . : - . Ai=mé; i+n(d i1+ 6 i-1)- 16
bution p°(x) is nonsingular, then lim, . ..p°%k)=0. This =M+ (i1t Giia) (16)
means that all Fourier qoe_fﬁmenfé(k) in Eq. (5) tend to This model was independently considered in the limit of an
zero in Fhe infinite-time limit, except the one that belongs tOinfinite|y large lattice by Dikst al.[9], who recognized that
k=0. Since the evolution equatior{15) can be solved analytically for
. arbitrary integer parametersmm and n [such that both
;O(O)ZJ dx p2(x)=1, (99 (1—¢)a andae/2 take integer valugsand used this fact to
0 show that the components of the staferepresent an en-
o R semble of independent identically distributed random vari-
this yieldsp(k) = 6y o and p(x) = 1. ables with the uniform probability density d8,1). This is
In a similar fashion we can now define and calculate tharue, however, only for certain combinationsrafandn. In
time correlation function on the 1-torus. Due to the nontrivialgeneraL the variable&t are not independent, i.e., there is a
topology of the state space the usual time correlation funcnontrivial coherent structure, although more sophisticated
tion methods are necessary to show this by calculating the natural
N invariant measureu(x), which defines the invariant density
<X0Xt>:f dx p(x)x (), (10) p(x) of the system t_hrougtj,_u(x)zp(x)dx [11]. In p_articu—
0 lar we will find that in certain cases the system might not be
ergodic, and even if it is, the invariant measure might be

where the coupling matri& has elements

where the time evolution ok is given by the mapf(x), nonconstant.
might produce confusing results. It is therefore advantageous Below we present the solution of a more general problem
to introduce the time correlation function of calculating an invariant measure of the systétB) of
L arbitrary lengthN for a wide class of matrices. Indeed, we
G(t):f dep(xo)ez”i(XO*X[), (11) can free ogrselves fr_om the specific fotir6) for A_ij , Which .
0 was physically motivated by the nearest-neighbor lattice
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model (14) and show that Eq(15) can be solved foany Since all quantities involved in Eq21) are periodic on an
matrix A that hasinteger valued elementsA In order to see  N-torus, the Fourier decomposition pf(x) contains only
this we write Eq.(15) in vector notation as wave vectork with integer componentsk(e ZN):
X 1=(AxYymod 1, (17 . .
pi0=20 pilkjerm X (23

wherex!=(x},...,x}) and the modulo is taken for each com-
ponent of the vectoAx'. Then we obtain by iterating from

the initial condition By using theN-dimensional generalization of the equality

@)

exp(2mik-[(A'x)mod 1]} =exp{2i[ (AY)TK]- X},
wherek! is a vector with integer components, which repre- (24)
sents the action of the modulo function. This yields

XI+1:(AXt)mod 1:AXt_kt, (18)

one obtains from Eqg21) and (23
X 2=(Ax""Hymod 1=(A[Ax'—k'])mod 1

ey — 00 Aty T
= (AAX'—AKYmod 1=(A>Ymod 1, (19 P (k)=p(A) k). (25

o If the initial distribution p°(x) is nonsingular, all Fourier
where the last equality sign holds only because all element P (x) 9

of the matrixA are integers, such thaik' is a vector with Coefficients vanish for large values of the wave vector:
integer components, which can be dropped under the last
modulo function. Since Eq19) holds for anyt, we obtain
the closed-form solution as a function of the initial value

lim p°k)=0. (26)

|k[—oe

For a completely expanding map, where all eigenvalues
of the matrix A have an absolute value larger than one,

Equation (19) shows that we can solve not only the "mtﬁx(At)Tk:w for eachk#0 and the only nonvanishing
coupled map lattice problerfid), but all linearly coupled Fourier component becomes
systems where the coupling occurs via a ma#iwith inte-
ger elementsA;; and the nonlinearity is provided by the ;O(O)ZJ dxp®(x)=1, (27)
modulo function. The solution can be obtained by first solv-
ing the linear problem, i.e., by obtainifx° and then tak-
ing the modulo, which is the same as having the linear ma
acting on anN-torus in analogy to the famous Arnold cat
map in two dimension§7].
_ Next we investigate the invariant density and the spa-is result is completely analogous to the single map case.
tiotemporal correlation function of the CML. The first quan- However, we may obtain different results for the invariant
tity gives us information about the measurable time-averagegensity if there are nonexpanding directions in the phase
spatial structures in the system and the second one tells Wace.
about the measurable spatiotemporal structures. Indexing the stable|§|<1), central {(\|=1), and un-

stable (\|>1) eigenvalues and righdeft) eigenvectorse
B. Invariant density (8) of the matrixAT with indicess, ¢, andu, respectively,
Similarly to the one-dimensional case, the invariant denwe have
sity p(x) yields the distribution of points on the attractor

xt=(Ax%)mod 1. (20

5vhich yields a constant invariant density

p(x)=1. (28)

generated by the mag*!=(Ax")mod 1. Assuming that the (AYTk= AL(SP. k)& (29)
map is mixing, it could be obtained by starting from an ini- p<scu '

tial distributionp®(x) as the infinite-time limit op'(x) in the

Frobenius-Perron equation According to the above, we will obtain results that differ

from the trivial expanding case only if there exists at least
onek# 0 such that its components along the unstable direc-
tions are all zero, i.e., it is contained in the direct sum of the

o ) stable and central manifold& € W°®W?) of the fixed point
Although the mixing property might not hold for every ma- x— g of the “conjugate” map

trix A with integer elements, we expect the violation of this

pt(X)=f dx’ 8(x— (Ax")mod 1)p°(x’). (22)

property to be an exception rather than the rule. In particular kit1=ATk!, (30)
it was proved[8] that the map(14) possesses an invariant
mixing measure for On the other hand, Eq$25) and (29) tell us that it is not
o enough to have central or contracting eigenvalues in order to
la|>2, e<e, (22 get a nonconstant invariant density.

L Let us first consider the case with a single stable direction
where 0< ¢ <1 is some constar(ft was suggested that this € and no central directions. Since all componektof a
result will in fact hold for all|a|>1). vectork are integers, it is contained within the stable mani-
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As a result, the definition of the invariant density has to be
adjusted to read

:E ; t t+1
p(X) zllm[p(x)+p ()]

t—oo

1
=23
2% |

im[p'(k)+p' (k)] * (3D

—

The invariant density will contain only nonvanishing Fourier
components with wave vectokse W& W*:

p(X): 2 eZﬂ'ik-X_i_} E (eZ'rrik»(Xfxo)
K k e (WCaWS)\WE 2 k eWe
1 )
+ezmk-<x—x1))_ (38)

FIG. 1. Cat map: None of the integer-component wave vectors

lies on the stable manifolav® of the fixed pointk=0. Using the fact that ank e ZNm(WCEBWS) can be repre-

] ) ) sented as a linear combination ofissually small number of
fold W® only if there exists a scalarsuch thatvk=¢®. This  pasis vector§, j=1,...M, with integer coefficientg, , i.e.,

in turn means that the componer{ss],....e}} should be k=3 p;fl, we can rewrite Eq(38) as
mutually rational, i.e.,

e]:e5rey=Kyikyio o iky (31 p)=11 X bt T X e2mipif!x
j=cs pj j=c pj
An example where we have one contracting and one ex- 12 _
panding direction is the cat map +5 > > g2mipjtl -, (39)
t=0 j=c p;
11
A= 1 2/ (32 where the basis vectors belonging§ andW* are denoted

asf® andf®, respectively. Summing up, we finally obtain
Although the eigenvalue corresponding to the contracting di-
rection is\s=(3—5)/2<1, this map still has a constant _ i _ i
invariant density because the components of the eigenvector P(X)‘jg,s 8((f1-x)mod 1) J-HC &((f1-x)mod 1)
e’=(2,1-\/5) belonging ton ¢ have a nonrational ratitsee

Fig. 1) leading to

1
+ 20 IT s(fi- (x—=A'X®)]mod ). (40)
t=0 j=c

N[ =

lim p'(k)=8yo. (33
t—oo

This result is quite interesting and revealing. First of all,

Generally, in order to get a nonconstant invariant densit)}'ve see that the local and global properties of the system

our model must possess a central and/or a stable manifol ,ncouple in the Fourier representation. The nontrivial struc-

i.e., Wee Ws{0}, whose direct sum in turn should contain ture appears as a combination of those properties, when the

at least one vector with mutually rational components. Even}[rr:te;sec;on.oa(tf_leo m‘.":[]gf[ﬂa”y szaNb'eh.mﬁr.“f‘t’r']W EBf\le tqf
vector k e ZN such thatk e (W@ WS)\WE is pulled in the € Tixed poink=10, wi € selr, which 1S Ine retiection

; PR P ; ; f the topology, contains more than one point.
long-time limit into the origin, according to E@29): 0 ’ ) .
9 9 9 429) Next we note that the evolution of the system is not al-

ways ergodic. In particular, if the set of basis vectbrds

not empty (which requires nonhyperbolicity in the first
place, the system has a continuum of ergodic components,
Similarly, vectorsk e ZN such thatk e WE are either left in- whose location is determined by the initial condition. Each

lim p'(k)=lim p°((AY)Tk)=p°(0)=1. (34)

t—x t—oo

variant under the action of the m&g0), and then ergodic component is contained in a finite union of sub-
’ spaces ofRN, which are perpendicular to every basis vector
ey — 20/ L) — o 2mik- X0 f€¢, in exact agreement with the statement, proved analyti-
plk=pik)=e ' 39 cally by Keller et al. (see Theorem 2 ifi8]) for a=2 and
or change sign after each iteration, giving £ e€[0,1]. An example of such situation is presented by the
' CML (14), as we will see below.
ﬁo(k)=e‘2””"xo, t even If the set of basis vectork® is empty, e.g., for a hyper-

(36) bolic system, we find the unique invariant densiiving the

~t —
k)=1 . .
Pk pl(k)=e 27kx'  t odd. natural measurgy(x)], in the form
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. where we defined= ke with xg«=N if q*=0,7/2,7
_ q q e,
p(X)—Jl;[S &((f!-x)mod 1), (41) and 2N otherwise. This in turn requiresp(x)
~ &((f-x)mod 1), which is seen to be the case by comparing

which reduces to Eq28) if the set offS is empty as well. With Eq. (41). _ _ _
Otherwise, a nonconstant invariant density results, leading to Similarly, the marginal eigenvalues;- = = 1 also require
the existence of nontrivial spatiotemporal structures in thdh€ cosine to be rational: cag)=(—m=1)/2n. It can be
system. We should note, however, that the structure of thE€€n that this is again consistent with the analytical result of
invariant density(41) implies that high-order correlations are Keller et al. (Theorem 2 of 8]). The theorem states that the
expected. The widely used pair correlation functions theremarginal value of the Lyapunov exponexy=1 for p=N/r

fore might not indicate any coherent structure, even if the®r P=N(r—1)/r, i.e.,g* =2a/r (or g* =2m(r - 1)/r if we
latter is present. allow q to vary in the interval,27]) with r=2, 3, 4, or 6,

is a sufficient condition for the existence of a continuum of
ergodic components.
Since 2 cogf*) can only take values Gt 1, and=+2, the
Up to now our conclusions have been completely generanaximal number of basis vectors for the CML5), (16) is
for any coupling matriXA with integer elements. Let us now M =6 and is achieved fom=0, n=*+1, andN=12, when
consider the condition(34) in more detail for our one- bhoth the number of “central” basis vectof§ and the num-
dimensional nearest-neighbor mod®#). The corresponding ber of “stable” basis vector$® reach the maximum values
matrix (16) can be diagonalized by Fourier transformation inof four and two, respectively.
the space variablels leading for periodic boundary condi-  From now on, however, we will restrict the discussion to
tions to eigenvalues the physically interesting case of ergodic dynamics. Then,
there is a unique invariant density, given by E4l) with
Ag=m+2n cogq) (42 M=2. In order to numerically check the consistency of our
results and to calculate various correlation functions, it is
useful to define the one-dimensional projection of the invari-
ant densityp(x) on a chosen directiog:

C. Nearest-neighbor coupling

and the corresponding eigenvectors
el=N"%(cogq),cog2q),...,co$NQ)),
ed=N"(sin(q),sin(2q),...,siMNg)), (43) Pq(S)= f,NcS(S—g'X)P(X)dX, (46)

whereq=2mp/N andp=0,... N/2 (for N even. where N denotes the uniN-dimensional cubg0,1]N. For
Of these only a few have mutually rational componentsexample, ifg;= &;; , Eq.(46) gives the distribution of thgth
For instance, both cog(l and sin(®):sin(g) are rational component of the stae(x;) =1 in complete agreement with
only if cos() is rational, which immediately restricts the the result off9].
allowed wave vectorgj=27p/N to a set of five values: If g coincides with one of the basis directions, ig=, vf'
q*=0,7/3,7/2,2m/3,m. Eachq* generates basis vectdr®  for somel, the projection
if [Ngx|<1 andf®if |[\gu|=1: "
_ |
f0=(1,...., Py(S) lea(s vf x)_[[1

> 8(p;—fl-x)dx
I Pj

w3 _ 1 _n _
fP=(1,-1,-2-112,..2, _S D, 5(s- vp) 47
p

f7%=(-1,-2,-1,1,2,1,..,2), _ _ , ,
becomes singular: We get a series dfunctions with an

f72=(0,-1,0,1,..,0), envelope
7°=(1,0-1,0,..,0, Dp=fINcS(lo—f'-X)jl;II 2 apy=flxdx. (49
]

famd=(-1,-12,..,2, Otherwise, the projectiof46) is a continuous, nonsingular
function of parametes. In other words, only the projection

f§7f/3:(_ 1,2-1,...—1), on the directions defined by the basis vectidrss singular.
~In particular, the eigenvecta® defines a basis direction

fr=(-1,1,..,1. (44) fl if and only if the projection(46) on this eigenvectofwe

definepd(s) = py(s) for g=€],
Rationality of cos§*) in not an unexpected result, e.g.,

M
choosing cos(*)=—m/2n results in the eigenvalugy« =0, q :f _ . i,
according to Eq(42), which requires pis) |N§(S © X)Jﬂl % op;—fl-x)dx, (49

(f-xYmod 1=0 V>0, (45) is singular. This implies that9= vqfj for somej.
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One can trivially verify that the projectiofd9) has the
average

sq=f Spq(s)ds=1 0 (50
2 Ya,

and the dispersion given by

z_f e 2.4 _1
oq=| (s Sq)P(S)ds_m(1+5q,0+5q,w) (51)

for all g#qg* and almost always fog=q*. The few excep-
tions are all specific to short lattices: FNr=2 andm=2n
we obtain

1 2
oo=15 070, (52
while N=2 andm= —2n yield
1
05=0, 0'12721—2; (53
N=3 with m=n gives
T0=T5 T3ms=0 (54)
and, finally, N=4 with m=0 and arbitraryn gives
2 1 2
00=07=52 Om2=0 (55)

It is interesting to note, however, that foi>4 the disper-
sion is given by formulg51) even for the values of param-
eters corresponding to nonergodic dynamics.

As expected, numerically calculating the projectjgtis)
on the stable and unstable directidd$), we get a singular
distribution only forq=qg* [Fig. 2(b)], provided the respec-
tive eigenvector is stable[X4/<1). Otherwise a smooth
Gaussian-like distribution is obtaing¢fig. 2(a)].

Indeed, one can easily see that fdr=0,

pd(s)= ﬁNﬁ(s—e‘lx)dx (56)

gives the probability distribution for the susof N indepen-
dent weighted random variablas, each uniformly distrib-

uted on[0,1]. The weights are given by the coordinates of
the eigenvectoe!. In the large length limit one can apply W

the central limit theoreni12], which would yield the distri-
bution for the suns, approaching a Gaussian Bs—.
For M>0 Eg. (49) still gives the probability distribution

for the sum ofN weighted random variables. However, now
the variables are not independent, but correlated through the
product ofM & functions(which can be simply interpreted as

functional dependences bf of the variables on the restn
the large length limit this correlation can be ignoi@s long
asM<N) and the integral in Eq49) will still approach a
Gaussian. A similar argument for the integral in E48)
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§—8q
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L
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$—Sq
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FIG. 2. Projection of the invariant densipf(s—s,) for (a) q
#q*, arbitrary \q as well asq=q*, |[\¢|>1 and (b) q=q*,
|Ng|<1. We used\=32.

of the singular distributiori49) become Gaussian fé— oo,
independent of the number of basis vectbts

vq [S—Sq g e
U—¢( o )5(s—yqp), if 3j:el=v,f!

1 [s—sq
G—qd’( o )

where ¢(t) = (2) Y2 exp(—t%2) is the normalized Gauss-
ian andvy= kg

pi(s)~
otherwise,

(57)

q

D. Spatiotemporal correlations

In the case of coupled map lattices the use of the standard
o-point spatial correlation function is rather well moti-
vated and is arguably the easiest way to uncover the pair
correlations inherent in the system. The correlation function
is trivially calculated to yield

1
C(r):<Xixi+r>_<xi><xi+r>:1_25r,0 (58)

for the completely expanding case wig{x)=1 [here ()
denotes the average taken wittx)].

shows that both the continuous distribution and the envelope If there are contracting directions, we rewrite E§8) as
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CN=3 (2t 02 6= 02+ 02— | e
q S,q c,q q sS,q c,q 12N

(59)

+ 1_25I‘,07

whereaSq ocq=0q forall q exceptaso os »=0. Since
=(1+ 8401 84,~)/24N for all g#q*,

C(r)=1—25

rot| 06— @) (

+| o —m)(— )r

1
+4 oo m) cogqr). (60)

q=m/3,m/2,27I3 (

This reduces to & correlation[which coincides with the
result (58) obtained forp(x)=1] in all but a few special
cases described above, Wh@ﬁ#(1+ dq.0t 9q,7)/24N. For

instance, choosinmm=0 yields, forN=4, the invariant den-
sity

p(X) = &(Xy = X3) 6(X2—X4) (62)
and according to Eqg55) and (60)
1 (-1) 1o r=0,2
CN=5z+ 37 = 12 . (62)
0 if r=1,3.
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where\; is the largest and, the next largest eigenvalue
ande! andé€? are the respective eigenvectors. For increasing
t the vectork! asymptotically approaches the direction de-
fined by e and therefore cannot lie on the stable manifold
for t= 1, whereris some finite(and typically smallinteger.

On the other hand, far=0 we have

M

G(r,0)= E H ) Z nifi—81.r )+ 81

(67)

and one can easily see that equal-time spatial correlations
vanish for sufficiently large lattices. Indeed, in the transla-
tionally invariant case any possible basis vect@t4) are
periodic in space with periods 1, 2, 3, 4, or 6 and any linear
combination of these will also be periodic with period of at
most 12. Since the vector with componeRfs: 5. j—

is not periodic forr # 0, the maximal size of the system with
nontrivial correlation is limited ttN=12. Again, considering
the CML (14) with m=0 andN=4 as an example, we ob-
tainf!=(0,—1,0,1) and?=(1,0,—1,0) as the basis vectors
and consequently

1 if r=0,2

G0O=14 i 113,

(68)

i.e., we retrieve the resu(62).

The results obtained above for two different two-point
correlation functions should serve as a warning for using
low-order correlations as an indicator of the existence of co-

Since the invariant density, although being nontrivial, herent structures. Although our model is admittedly rather

does not tell us much about the spatiotemporal structures igpecial, we might suggest that certain types of coherent
the system, next we introduce a spatiotemporal correlatiostructures will generically only transpire through the high-
function G;(r,t), which is a straightforward generalization order correlations such that the order is comparable to the

of the time correlation functiofl1l):

Gi(r,t)= f dx0p(x0)e2m (5 =% 1), (63)

By expandingp(x) into Fourier series we obtain, in analogy

to Eq.(25),

Gi(r,t)= Zp(k)H S(ki—Al T 8. (64

Since only the nonvanishing Fourier componepts* )= 1
(wherek* =3,n,f') of the invariant density41) contribute,
Eq. (64) reduces to

M

Gi(r,t)= Z H 8| 2 mifj=Alj+d,]. (69

In a translationally invariant systef®;(r,t) does not depend
oni, so we drop the index and fix(seti=1 to be specific
It can be easily verified that the correlatié®d) is short

ranged in both space and time. First we note that it vanish

if the vectork; with components;=A}_ ;~&;; does not
lie on the stable manifol&V°. According to Eq.(29),

At1+r,j:)\t e1+r j+ (66)

)\ t
)\l) el+l‘ J+ }

number of degrees of freedom of the dynamical system con-
sidered.

IV. DISCUSSION

To summarize, we have shown that the solution for the
dynamical behavior of a lattice of Bernoulli maps, which are
coupled by a matriA with integer coefficients, can be given
in the closed form as!=(A'x°)mod 1, i.e., the dynamical
behavior of the coupled map system can be described by the
repeated action of a linear majdx® on variables that are
confined to arN-torus. This picture explains that the essen-
tials of the dynamical behavior are dictated by the eigenval-
ues and eigenvectors é&f.

We have also calculated the invariant density and a num-
ber of correlation functions, and it is instructive to compare
our results with the general results obtained by Bunimovich
and Sinai5], who proved that for sufficiently small coupling
(in our case determined by the parametgcertain expand-
ing coupled map systems with finite-range coupling possess
an invariant measurg(x), whose finite-dimensional distri-
butions are absolutely continuous. Furthermore, it was

&Sroved that the time and space correlation functions decay
exponentially(not slower than exponentially, to be exact

Indeed, small coupling in our model means that there are
no contracting directions and as a result we have a com-
pletely expanding system with the unique invariant measure
that has constant densip(x)=1. For larger coupling, the
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invariant measure might still exist, but might not be abso-space and time correlations can decay exponentially or faster
lutely continuous due to the fact that large coupling ofteneven in the systems with global coupling.
causes the appearance of contracting directions even if the Summing up the main points, we might suggest that there
isolated local map$(x) are expanding. For certain values of exists a class of spatiotemporally chaotic systems that dis-
control parameters, however, the invariant measure disaflay no coherent structures in certain regions of parameter
pears, giving way to the continuum of ergodic componentssPace. However, even !f the cpherent structure is present, the
selected by the choice of initial conditions. Although our SPatiotemporal correlations might decay subexponentially or
model suggests that the existence of the central manifold i§V€N Showé correlations. In the latter case higher-order cor-
the crucial ingredient in the violation of ergodicity, it re- relation functions are necessary to discover the coherent
mains to be seen whether it constitutes the necessary conditf
tion in general.

We find that the invariant densify(x) of the system(15)

ucture.

Furthermore, we can suggest that the dynamics of certain

spatiotemporally chaotic systems could lose the ergodicity

: . e . . property on some hypersurface of the parameter space. When
dlspllays Fourletr cc:efflrc]lents th‘;: ar? ci;;‘ferent 'ffrok;n ZfeiLO’ 1-€-this happens, the Lyapunov spectrum and finite-dimensional

p(x) is nonconstant, whenever the stable manifold of the zerQ ), iqtemporal correlation functions could provide us with

wave vector contains a nonempty basis of directionwith initial-condition-independent information about the system
mutually rational components, generating an infinite asympgynamics.
totically contracting set of wave vectors. For nearest- " | et ys finally point out several directions of further re-
neighbor couplings in a one-dimensional latfigeven by the  search. One open problem is the extension of our results to
matrix (16)] the maximal number of such basis vectors is sixhigher dimensions and to couplings that have a longer range.
(two for ergodic dynamigs In the one-dimensional case the eigenvectors remain also
The standard spatial correlation functi&@\(r) for the valid for longer-ranged couplings; only the eigenvalues
model with nearest-neighbor couplings is given bychange. This means that a model with a long but finite range
C(r)=(1/12)é, o for almost any combination of control pa- will have no more structure in the invariant density than the
rameters. A few special cases exist, however, for sufficientlyghort-ranged model. This is of course a peculiarity of the
small lattices, where the spatial correlations are different. Wé@ernoulli shift map, but should again be taken as a warning
can interpret this result by noting that the order of the correfor making conclusions from the spatial range of the cou-
lation function, i.e., 2, is indeed comparable to the length ofling onto the observable spatial patterns.

the lattice with nontrivial correlations, i.eN<4. Neverthe- Although our solution for the dynamics and the correla-

less, C(r) always vanishes at sufficiently large distancesfion functions does hold for general dimensions, it would be

which is consistent witff5]. interesting to see what the restrictions on the wave vectors

Furthermore, it is rather interesting to note that both theat generate the basis of the invariant density look like in

Lyapunov spectrum anéfor sufficiently large latticesthe two and three dimensions. The study of the model with non-

spatial correlation function not only can be calculated exA"t€ger coupling and expansion rates using a sort of pertur-

actly, but do not depend on the initial conditions for arbitraryb‘i‘t'on technique around an exact solution also seems prom-
values of system parameters, even when the dynamics of th&n9-

system is not ergodic. Such dynamical invariants, although Finally, one cpuld investigate the d.y”a’T“‘%a' behaviar of a
not universal, should be very helpful in describing noner_system,_whose time dependence IS graqoriorn by Eq.(20
godic dynamical systems. for matricesA with nonintegerelements. By doing so one

will lose the property of the original map that relati¢tv)

The invariant density and the spatial correlation function ) .
of the model considered here display little structure com0!ds step by step, although the trajectories generated by Eq.

pared to the Lyapunov spectrum, which is, for the nearest(20) are well defined.
neighbor coupling, given by\ ;=Injm+2n cosg)|. This re-
sult shows that the time-averaged spatial behavionas
simply a straightforward reflection of the Lyapunov spec- The authors thank M. C. Cross for the careful reading of
trum (see related works listed {13]). the manuscript. H.G.S. thanks C. Koch for the kind hospital-

We have also calculated the measurable spatiotemporitly extended to him at Caltech and the Volkswagen Founda-
correlation functionG(r,t) for the translationally invariant tion for financial support. This research has also been par-
model and shown that it too is short ranged in both space anghlly supported by the NSF through Grant No. DMR-
time for arbitrary coupling matrixA. This suggests that 9013984.
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