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Abstract

We study the flow in a confined layer of volatile simple liquid subjected to a horizontal temperature gradient. The somewhat
unusual feature of this problem is that the gas layer, which contains a mixture of vapor and air, plays a very important role. Due to
phase change occurring at the free surface, the mean flow in the liquid layer and its stability are controlled almost entirely by the
mass and heat transport in the gas phase. To explain why this is the case, we use numerical simulations based on a comprehensive
two-sided transport model to motivate a simplified analytical description of the problem, which allows us to compute the interfacial
temperature and hence the thermocapillary stresses at the free surface which control the flow. The analytical solutions are found to
agree quite well with the results of our numerical simulations as well as the results of relevant previous studies.

Keywords: Marangoni convection, two-phase flows, interfacial flows, free surface flows, phase change, surface tension effects,
thermocapillarity, heat pipes

1. Introduction

The problem of convection in volatile fluids with a free sur-
face subject to horizontal temperature gradient has received a
lot of attention due to the increasing demand for more efficient
and compact cooling technologies. In particular, two-phase
evaporative cooling technologies achieve high heat fluxes by
exploiting large latent heat associated with phase change at the
liquid-gas interface. Thermal management devices such as heat
pipes, thermosyphons, and heat spreaders are typically sealed
(to avoid loss of working fluid due to evaporation), with a layer
of liquid in contact with a layer of gas mixture containing the
vapor and the noncondensable gases (such as air) [1]. Under ter-
restrial conditions, horizontal temperature gradient generates a
convective two-phase flow which is driven primarily by a com-
bination of capillary force, thermocapillary stresses, and – for
larger devices – buoyancy.

While noncondensable gases are well-known to impede
phase change and reduce heat transfer coefficient associated
with condensation [2], it is usually infeasible to remove them
completely from the gas phase, as air tends to dissolve in liq-
uids and be absorbed in solids. Therefore, a fundamental un-
derstanding of two-phase flows and heat and mass transfer with
varying levels of noncondensables is essential for better design
of evaporative cooling devices. However, our current under-
standing of this problem remains incomplete (a detailed review
of the state-of-art in the field and various open questions can be
found in Ref. [3]). A key observation is that the design of ther-
mal management devices to this day is based on experimental
studies of buoyancy-thermocapillary convection, the vast ma-
jority of which have been performed at ambient (atmospheric)
conditions, while the ideal operating conditions correspond to

the gas phase dominated by the vapor. For instance, many theo-
retical studies [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] focus on the liquid
layer and ignore transport in the gas layer, which is only justi-
fied at atmospheric conditions, so their results are of limited
value where they matter the most. Few theoretical studies have
used comprehensive models which described momentum, heat,
and mass flux in both liquid and gas phase, as well as a detailed
description of phase change at their interface [14, 15, 16, 17].
Yet, without such detailed models it is impossible to correctly
identify the limiting factors affecting the performance of evapo-
rative cooling devices or construct simplified models that could
be used to build intuition about the key design principles.

We have previously developed variations of detailed two-
sided transport models for two-phase flow of volatile fluids
driven by horizontal temperature gradients in the presence of
noncondensables, which include all four basic components of
this problem: (1) the fluid flow and the heat transport in the liq-
uid phase, (2) the fluid flow, and the heat and mass transport in
the gas phase, (3) the dynamics at the interface between the two
phases (e.g. the heat and mass transport across the interface),
and (4) the heat conduction within the solid walls of the cav-
ity containing the working fluid. While these models provide
a comprehensive description of two-phase flows, they are only
valid in the limiting cases when the gas phase is dominated by
either air [14, 16] or vapor [17, 18] and cannot accurately de-
scribe intermediate compositions. This study will first present a
more general transport model valid for arbitrary composition of
the gas phase, which can only be solved numerically. Next, to
gain the insight into the numerical solutions, we derive a greatly
simplified transport model, which can be solved analytically.

The outline of the present study is as follows: The compre-
hensive model is described in detail in Section 2. The results of

Preprint submitted to International Journal of Heat and Mass Transfer July 14, 2019



x

z

L

H

W

y
cT hT

Figure 1: The test cell containing the liquid and gas mixture. Gravity is pointing
in the negative z direction. The shape of the contact line reflects the curvature
of the free surface.

the numerical investigation of this model are analyzed in Sec-
tion 3. The simplified model is derived and its predictions are
compared with those of the comprehensive numerical model in
Section 4. Finally, our summary and conclusions are presented
in Section 5.

2. Comprehensive Transport Model

2.1. Governing Equations

The generalized two-sided model of two-phase flow of non-
isothermal volatile fluids presented below is loosely based on
the previous models valid in the limiting cases where the gas
phase is dominated by either air [16] or vapor [19, 17]. In those
models, mass transport was described using the advection-
diffusion equation for the mass density of the dilute component.
The present model describes mass transport in terms of the mo-
lar fraction, which makes it applicable over the entire range of
composition. Specifically, local mass conservation for the va-
por can be written in terms of its number density nv

∂tnv + ∇ · jv = 0, (1)

where the number density of vapor nv can be related to the to-
tal number density ng through the vapor concentration (molar
fraction) cv

nv = cvng, (2)

and jv is the total number flux of vapor

jv = nvu − j′v, (3)

which consists of two components: the first term on the right-
hand-side represents the advection due to the gas mixture flow-
ing with the average speed u, and the second term – the dif-
fusion component. The diffusion number flux j′v is driven by
the concentration gradient, which can be described using the
Maxwell-Stefan relation [20]. For a binary mixture, this rela-
tion essentially reduces to Fick’s law

j′v = −ngD∇cv, (4)

where the binary mass diffusivity D is a function of pressure
and temperature

D = D0
p0

g

pg

(
T
T0

)3/2

, (5)

and D0 is the mass diffusivity at the reference temperature T0
and pressure p0

g. With the help of (2), (3), and (4) we find

∂t(cvng) + ∇ · (cvngu) = ∇ · (ngD∇cv). (6)

Note that, in this study, we are ignoring the thermodiffusion
(Soret) and diffusion-thermo (Dufour) effects, which are typi-
cally negligible and trivial to take into account.

Both the vapor and air are assumed ideal, hence the total
number density ng can be computed using the ideal gas law

ng =
pg

kBT
, (7)

where pg is the total pressure in the gas phase and kB is the
Boltzman constant. The corresponding chemical potential is

µg = µ0
g + RT ln

pg

p0
g
, (8)

where R is the universal gas constant. The constancy of the
chemical potential implies that the gas pressure is constant
(even taking viscosity into account this remains an excellent
approximation [19]). Since the gas is non-isothermal, the flow
cannot be considered incompressible. The conservation law for
the total number density is

∂tng + ∇ · (ngu) = 0. (9)

Combining (6) and (9) we find

∂tcv + u · ∇cv = n−1
g ∇ · (ngD∇cv). (10)

Since the product ngD ∝ T 1/2 depends rather weakly on the
temperature (and hence on the position), we consider it con-
stant, yielding an advection-diffusion equation for the concen-
tration of vapor

∂tcv + u · ∇cv = D∇2cv. (11)

The transport equation (11) is valid for the entire range of gas
composition. Although a similar equation can be written for air,
its concentration ca can instead be found from

cv + ca = 1. (12)

The conservation equations for the mass, momentum and
temperature are standard and remain the same as in the previous
models [16, 17]. The liquid phase is considered incompressible,
since the corresponding thermal expansion coefficient is small

∇ · u = 0. (13)

For the gas phase, in steady state, we find from (7) and (9)

∇ · u = −n−1
g u · ∇ng = T−1u · ∇T, (14)

where the right-hand-side can also be neglected for small tem-
perature gradients considered here (e.g., an applied temperature
difference of ∆T = 10 K corresponds to about 1% variation in
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the temperature along the cell). The momentum transport in the
bulk is described by the Navier-Stokes equation

ρ (∂tu + u · ∇u) = −∇p + µ∇2u + ρ(T, cv)g, (15)

where p is the fluid pressure, u is the fluid velocity, ρ and µ are
the fluid’s density and viscosity, respectively, cv is the concen-
tration of vapor, and g is the gravitational acceleration. Follow-
ing standard practice, the Boussinesq approximation is used,
where the density variation due to temperature and concentra-
tion is only considered in the last term on the right-hand-side,
which represents the buoyancy force. In the liquid phase

ρl = ρ0
l [1 − βl (T − T0)], (16)

where ρ0
l is the reference value for density at the reference tem-

perature T0, and βl = −(∂ρl/∂T )/ρl is the coefficient of thermal
expansion. In the gas phase

ρg = ρa + ρv = (m1
aca + m1

vcv)ng, (17)

where m1
a and m1

v are the masses of the air and vapor molecules.
On the left-hand-side of (15) the density is considered constant
for each phase, and is set to be equal to the spatial average of
ρ(T, cv). Finally, the heat transport in the bulk is described by
the advection-diffusion equation

∂tT + u · ∇T = α∇2T, (18)

where α = k/ρCp is the thermal diffusivity, k is the thermal
conductivity, and cp is the specific heat capacity, of the fluid.

For a volatile fluid in a sealed cavity, the external temperature
gradient causes both evaporation and condensation, which leads
to movement of the liquid-gas interface, and the change of the
volumes of the two phases. In a numerical implementation of
the model, the change in the liquid volume does not satisfy the
mass flux balance at the interface exactly due to numerical er-
rors (e.g., discretization). These errors eventually accumulate,
leading to a loss off mass conservation for the liquid phase, and
resulting, due to the large ratio of the densities, in a large rela-
tive error for the mass of vapor, unless corrected. The approxi-
mations made in deriving the mass transport equation (11) will
also contribute to the error. To ensure global mass/number con-
servation for each component (vapor and air) we will require

w

liquid
nl dV +

w

gas
cvng dV = Nv =

mv

m1
v

(19)

and w

gas
(1 − cv) ng dV = Na =

ma

m1
a
, (20)

where Nv and Na are the total number of the vapor and air, and
mv and ma are the initial net mass of vapor and air. A (spatially
uniform) pressure offset po and vapor concentration correction
∆cv are introduced to enforce these conservation laws. They
are updated at each time step by solving the constrains (19) and
(20) with

cv = c′v + ∆cv, (21)
pg = p + po,

where c′v is the (uncorrected) numerical solution of the transport
equation (11), pg is the absolute pressure, and p is the dynamic
pressure in the gas phase obtained by solving the momentum
conservation (15) and incompressibility equation (13).

2.2. Boundary Conditions

The system of coupled evolution equations (13), (15), (18),
and (11) for the velocity, pressure, temperature, and concentra-
tion fields should be solved in a self-consistent manner, subject
to the boundary conditions describing the balance of momen-
tum, heat, and mass/number fluxes. In the comprehensive
model, we will describe phase equilibrium using the Antoine
equation, which is valid over a wide range of conditions,

ln pv = Av −
Bv

Cv + T
, (22)

where Av, Bv, and Cv are empirical coefficients. In the sim-
plified description, it will be more convenient to use the more
popular Clausius-Clapeyron equation

ln
pv

p0
v

= −
L

R̄v

(
1
T
−

1
T0

)
, (23)

where p0
v is the reference value of the vapor pressure at the ref-

erence temperature T0 and R̄v is the specific gas constant for
vapor. The Clausius-Clapeyron and the Antoine equation are
equivalent for small deviations from T0 when the latent heat is
defined according to

L =
BvR̄vT 2

0

(Cv + T0)2 , (24)

as can be verified by evaluating the relations (22) and (23) and
their partial derivatives with respect to T at T0. In the following,
these relations will be used to define the saturation temperature
Ts in terms of the partial pressure pv.

We will rely on the kinetic theory of gases [21] which as-
sumes that the chemical potential and the temperature are con-
tinuous across the liquid-gas interface

Tl = Ti = Tg, (25)

yielding the following expression for the number density flux
across the interface due to phase change

jv =
2λ

2 − λ
ngcv

√
RvTi

2π

[
pl − pg

ρlRvTi
+
L

RvTi

Ti − Ts

Ts

]
, (26)

where λ is the accommodation coefficient and Ts is computed
from (22). For nonpolar liquids, the accommodation coefficient
is found to be equal (or very close) to unity [22, 23], so we set
λ = 1 in this study.

The mass/number flux balance for the vapor on the gas side
of the interface is given by

jv = ngcv n̂ · (ug − ui) − ngD ∂ncv, (27)
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where ui is the velocity of the interface and n̂ is the surface
normal vector. Since air is noncondensable, its flux across the
interface is zero:

0 = ngca n̂ · (ug − ui) − ngD ∂nca. (28)

Using (12), (27), and (28) we can find a pair of boundary con-
ditions for ug and cv at the interface:

n̂ · (ug − ui) =
jv
ng
, (29)

and
∂ncv = −

1 − cv

D
jv
ng
. (30)

The mass/number flux balance on the liquid side of the interface
is given by

n̂ · (ul − ui) =
jv
nl
, (31)

where the right-hand-side can be effectively set to zero, since
nl � ng. While the normal component of velocity is discon-
tinuous at the interface in the presence of phase change, the
tangential components of velocity are continuous:

(I − n̂n̂) · (ul − ug) = 0. (32)

The normal component of the stress balance at the interface

n̂ · (Σl − Σg) · n̂ = σκ + J2
v (ρ−1

l − ρ
−1
v ) (33)

incorporates the capillary pressure and vapor recoil [24], where

Σ = µ
[
∇u + (∇u)T

]
− pI (34)

is the stress tensor and Jv = m1
v jv is the mass flux of vapor. The

effect of vapor recoil is found to be negligible in this study. The
tangential component of the stress balance

(I − n̂n̂) · (Σl − Σg) · n̂ = ∇sσ (35)

accounts for the thermocapillary effect, where

∇sσ = −γ∇sTi, (36)

γ = −∂σ/∂T is the temperature coefficient of surface tension
and

∇s = (I − n̂n̂) · ∇ (37)

is the surface gradient. The heat flux balance across the inter-
face is given by

LJv = kgn̂ · ∇Tg − kln̂ · ∇Tl. (38)

Finally let us discuss the boundary conditions at the inner
surfaces of the cavity confining the fluid. Following the pre-
vious experimental [25] and numerical studies [16, 17], we as-
sume the fluid is contained in a rectangular test cell with inner
dimensions L ×W × H (cf. Fig. 1) and thin walls of thickness
δw and conductivity kw. The left wall is cooled with constant
temperature Tc imposed on the outer surface, while the right

wall is heated with constant temperature Th > Tc imposed on
the outer surface. Since the walls are thin, one-dimensional
conduction (along the x-direction) is assumed through all the
walls, yielding the following mixed boundary conditions on the
inner surfaces of the side walls:

T |x=0 = Tc + kι
δw

kw
n̂ · ∇T, (39)

T |x=L = Th + kι
δw

kw
n̂ · ∇T,

where n̂ is the wall-normal vector, and ι = g (ι = l) above
(below) the contact line. The remaining walls of the cell are
assumed to be in contact with air, which is a poor thermal con-
ductor, and hence can be considered adiabatic:

∂nT = 0. (40)

Standard no-slip boundary conditions u = 0 for the velocity and
no-flux boundary conditions for the concentration of vapor

n̂ · ∇cv = 0 (41)

are imposed on all the inner surfaces of the walls.

3. Results

To validate the generalized two-sided transport model de-
scribed here, we implemented it numerically and reproduced
several key results obtained previously for the well-studied
problem [26, 16, 17, 3] of buoyancy-thermocapillary-driven
flow of volatile silicone oil (hexamethyldisiloxane) confined in
a sealed rectangular test cell made of quartz (fused silica). The
inner dimensions of the test cell are L × H × W = 48.5 mm
×10 mm ×10 mm and all material parameters of the fluid and
its vapor can be found in Ref. [17].

A horizontal temperature gradient is applied by keeping the
outer surfaces of the end walls at the temperatures Tc = T0 −

∆T/2 and Th = T0 + ∆T/2. For comparison with the previ-
ous numerical studies, the same average thickness of the liquid
layer dl = 2.5 mm (which corresponds to the dynamic Bond
number BoD = O(1)) and contact angle of 50◦ were used. While
the numerical implementation of the model can describe flows
in either 2D or 3D geometry, the results presented here were
obtained exclusively for 2D flows (where the variation as well
as the flow in the y-direction are neglected).

3.1. Dilute Limits
Previous numerical studies [16, 17] used transport models

that were only justified in the limiting cases where the gas phase
is dominated by either vapor or air. In these limits the predic-
tions of the present model should agree with those older mod-
els, and in fact this is what we find. Fig. 2 shows the asymp-
totic states of the flow (after initial transients have died down)
for T0 = 293 K and ∆T = 4 K at the average air concentration
c̄a = 0.01 (when the vapor is dominant) and c̄a = 0.96 (atmo-
spheric conditions, when the air is dominant). This temperature
difference was chosen since it corresponds to steady flows for

4



c̄a = 0.01

c̄a = 0.96

Figure 2: Numerical results for the flow field at ∆T = 4 K with different average concentrations of air c̄a using the new (general) model (left column), and the
previous (limiting-case) models [16, 17] (right column). The cold end wall is on the left. Solid lines represent the streamlines of the flow. Here and below, the
background represents the value of the stream function ψ, where darker (lighter) shade indicates higher (lower) values of ψ.

the entire range of c̄a, as we show next (cf. Fig. 5). Although
the shape of the streamlines depends on the (arbitrary) choice
of the streamfunction values, the flow patterns produced using
different transport models are found to be essentially indistin-
guishable in both cases.

A more quantitative comparison in terms of the interfacial
mass flux Jv describing phase change, interfacial temperature
profile Ti which controls the thermocapilllary stresses, and the
resulting interfacial flow velocity ui is provided in Fig. 3.
Again, we find the predictions of the present model to be quite
similar to those of the previous studies. The slight discrepancy
in ui observed near the cold end of the test cell is due to the dif-
ference in the treatment of the gradient of the number density
at the interface between the two models. The previous mod-
els [16, 17], which rely on local mass conservation of the di-
lute component, lead to the following relation between the mass
fractions of vapor and air

∂nρv

Mv
+
∂nρa

Ma
= −

pg

RT 2
i

∂nT. (42)

The current formulation uses molar fractions instead, where
(12) yields instead

∂ncv + ∂nca = 0. (43)

The two relations become formally equivalent only when the
gradient of T (or ng) normal to the interface vanishes. When
the gradient is not too large, the difference is quite small, so
both models can be considered to provide a comparably accu-
rate description of transport.

3.2. Flow Regimes

Having validated the generalized transport model, we next
investigate the effect of air on the convective flow over the en-
tire range of c̄a, which was previously inaccessible to numer-
ical simulations. Most of the results presented correspond to
the imposed temperature difference of ∆T = 10 K, to enable
comparison with previous studies. Another advantage of this
choice is that, as c̄a varies between the two limits, the flow ex-
hibits all the qualitatively different regimes observed previously

at BoD = O(1), with the corresponding flow states shown in
Fig. 4. At atmospheric conditions (cf. Fig. 4(a)), we find an
oscillatory multicellular flow (OMC) with the convection rolls
covering the entire liquid layer. As c̄a is decreased, the flow be-
comes steady and a steady multicellular (SMC) convection pat-
tern is found (cf. Fig. 4(b)) with convection rolls still covering
the entire liquid layer but becoming noticeably weaker. As c̄a

is decreased further (cf. Fig. 4(c-d)), the convection rolls in the
liquid layer further weaken and start to disappear near the cold
end, but persist near the hot end; the resulting state is referred
to as the partial multicellular (PMC) pattern. At even lower c̄a

(cf. Fig. 4(e-f)), convection rolls in the bulk of the liquid layer
disappear completely. This pattern is known as a steady uni-
cellular flow (SUF) and features only a pair of convection rolls
driven by buoyancy, one near each end wall.

The presence of air also strongly affects the flow in the gas
phase. At relatively high c̄a, phase change is greatly suppressed
and the flow in the gas phase is similar to that in the liquid (cf.
Fig. 4(a)), with convection rolls appearing at almost the same
positions along the interface, but rotating in the opposite direc-
tion. As c̄a decreases, the convection rolls gradually weaken
and disappear, also starting near the cold end (cf. Fig. 4(b-c)).
At c̄a . 0.3, phase change becomes stronger, as indicated by
the streamlines that originate and terminate at the interface (cf.
Fig. 4(d-e)). For ever lower c̄a (cf. Fig. 4(f)) all recirculation
zones in the gas phase disappear, and the flow becomes uni-
directional, from the hot side where the liquid evaporates to the
cold side where the vapor condenses.

The different regimes are summarized in the flow regime map
presented in Fig. 5 as a function of the average air concentration
c̄a and the interfacial Marangoni number

Mai =
γd2

l

µlαl
τ̄. (44)

Here τ̄ is the spatial average of the interfacial temperature gra-
dient τ = ∇sTi, which reflects the imposed temperature differ-
ence. As the Figure illustrates, the flow regimes found in the
simulations based on the generalized transport model are found
to be in good agreement with both the experimental observa-
tions [25], and the predictions of the linear stability analysis
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Figure 3: Numerical results for the mass flux due to phase change (a), interfa-
cial temperature profile (b), and the magnitude of the interfacial velocity (c) at
∆T = 4 K with different average concentrations of air c̄a. To highlight the vari-
ation of the mass flux Jv and the interfacial temperatude Ti in the central region
of the cavity, the y-axis is truncated in (a) and (b), respectively. In addition,
the deviation δTi = Ti − 〈Ti〉x from the average is plotted in (b). Black lines
represent the results based on the current model, grey lines – the results based
on the previous models [16, 17].

(a) c̄a = 0.96

(b) c̄a = 0.70

(c) c̄a = 0.50

(d) c̄a = 0.30

(e) c̄a = 0.08

(f) c̄a = 0.01

Figure 4: Numerical results for the flow field at ∆T = 10 K. The cold end
wall is on the left. Solid lines represent the streamlines of the flow; color cor-
responds to the values of stream function ψ, where darker (lighter) indicates
higher (lower) values of ψ.
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Figure 5: Flow regime diagram in the c̄a − Mai parameter space: SUF (#),
PMC (4), SMC (2), and OMC (3). Open symbols correspond to experimental
results of Li et al. [25] and filled symbols – numerical results obtained in this
study. Thick solid lines represent the critical Marangoni number for onset of
the PMC (black) and SMC (dark grey) predicted by the linear stability analysis
[27]. Thin dotted (dashed) black line corresponds to ∆T = 10 K (∆T = 4 K).

[27], except at c̄a . 0.2 (the reasons for the discrepancy will be
discussed later).

4. Simplified Transport Model

In this section we will use the insight provided by the numer-
ical simulations to derive a simplified transport model capable
of providing a quantitative description of the flow in the SUF
regime. The previous analysis of the c̄a → 0 limit [17] has
shown that it is the concentration field in the gas phase that ul-
timately plays the dominant role in this problem: it determines
the interfacial temperature, surface stresses, and hence the flow
field. As we will show below, a pretty accurate analytical de-
scription of the concentration field can be obtained for the base
flow over the entire range of c̄a in the central region of the flow,
where the interface is nearly flat. The original analysis assumed
that phase change and advection in this region are negligible to
compute the concentration field cv = cv(x). Why, and under
which conditions, this result is valid will be discussed below.

Following Ref. [28], we will introduce the rescaled coordi-
nates χ = x/dg and ζ = z/dg, where dg = H −dl is the thickness
of the gas layer in the central region. If we assume the interface
coincides with the plane z = 0, then the gas phase corresponds
to 0 < ζ < 1 and 0 < χ < Γg, where Γg = L/dg is the aspect
ratio of the gas layer. Since the flow field is constrained to the
χ − ζ plane and is incompressible, it can be written in terms of
the stream function ψ(χ, ζ),

ug = x̂∂ζψ − ẑ∂χψ. (45)

As Fig. 3(a) illustrates, phase change in the central region is
indeed negligible in the SUF regime. Hence, for a sufficiently

large Γg (in this study Γg ≈ 6.5), the flow of gas in this region
can be assumed horizontal

ug = uxx̂ + uzẑ ≈ uxx̂, (46)

where uz/ux = O(Γ−1
g ). We can therefore simplify the mass

transport equation (11) to

dgux∂χcv = D(∂2
χcv + ∂2

ζcv), (47)

with the vertical component uz of the velocity yielding a higher
order correction. Furthermore, the horizontal component of ve-
locity ux can be decomposed into two contributions:

ux = ūx + ũx(χ, ζ), (48)

where ūx = const < 0 represents the mean flow (the vapor flows
in the direction opposite to the applied temperature gradient)
and ũx represents the zero-mean recirculation flow

w 1

0
ũxdζ = 0. (49)

Correspondingly, we can write

ψ = ūxζ + ψ̃(ζ) + O(Γ−1
g ), (50)

where ũx = ∂ζ ψ̃ and
w 1

0
∂ζ ψ̃dζ = ψ̃(1) − ψ̃(0) = 0. (51)

Since the phase change at the liquid-gas interface is negligi-
ble in the central region, the mass/number flux vanishes, i.e.,
∂ζcv = 0, at both ζ = 0 and ζ = 1. The solution obtained in
Ref. [17] can be reproduced by setting ux = ūx (i.e., ũx = 0)
and solving (47) subject to the no-flux boundary conditions on
cv, which yields

cv = C0 + C1e−Pemχ, (52)

where

Pem =
|ūx|dg

D
(53)

is the Péclet number which corresponds to the mean flow and
C0 and C1 are the constants which can be determined based on
the net amount of vapor and the net mass flux associated with
phase change (to be defined later). In the general case (i.e.,
ũx , 0), the solution to (47) is

cv = C0 + C1e−Pemχ[1 + g(ζ)], (54)

where the function g(ζ) describing the vertical concentration
profile satisfies the differential equation

g′′(ζ) =
ūxũx(ζ)d2

g

D2 [1 + g(ζ)]. (55)

The right-hand-side of (55), and hence g(ζ) itself, is of order
ε = PemPer, where

Per = max
ζ

|ũx(ζ)|dg

D
(56)
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Figure 6: The numerical values of Pem (open symbols), Per (gray symbols),
and their product ε (black symbols) at ∆T = 10 K.

is the Péclet number describing the strength of the recirculation
flow ũx. To leading order in ε, we find

g(ζ) =
ūxd2

g

D2

w
ψ̃(ζ)dζ + O(ε2). (57)

The no-flux boundary conditions for cv require g′(0) = g′(1) =

0. This is only consistent with (57) when (51) is satisfied, which
justifies the separation of the flow field into the two compo-
nents, ūx and ũx.

As long as ε � 1, the variation of cv in the vertical direction
is negligible and the general solution (54) reduces to the special
case (52). The crucial observation is that although Per can be-
come quite large for c̄a → 1, ε remains small regardless of the
average concentration c̄a of air for sufficiently low ∆T , as Fig.
6 illustrates. Indeed, numerically computed solutions for all c̄a

are characterized by concentration field (cf. Fig. 7) whose gra-
dient in the vertical direction is small compared with that in the
horizontal direction in the central region of the test cell.

In order to compare the analytical predictions with numeri-
cal results quantitatively, we need to determine the mean flow
velocity in the gas. Since mass transport is essentially one-
dimensional in the central region, the fluxes of vapor and air
satisfy

J = m1
vng(D∂xcv − ūxcv),

0 = m1
ang(D∂xca − ūxca), (58)

where J is the mass flux of vapor. Adding these two equations
(notice that cv + ca = 1, ∂xcv + ∂xca = 0), we find

ūx = −
J

m1
vng

. (59)

Using mass conservation, the mean mass flux at location x,
Jg(x), can be approximated by integrating the local mass flux
Jv describing phase change at the interface, from x to L:

Jg(x) =
1
dg

w L

x
Jv(x′) dx′. (60)

Since evaporation (condensation) takes place mainly near the
hot (cold) wall, mean flux is a function of x, however, as sug-
gested by the numerical results, it becomes essentially constant

Jg(x) ≈ J0 in the central region of the test cell (cf. Fig. 8),
where we have defined the characteristic mean mass flux

J0 = max
x

J(x). (61)

We will therefore use J0 in place of J in (59) for computing the
mean flow velocity in the gas.

Let us next consider the dependence of the mean flux J0 on
the average concentration of air c̄a. For sufficiently low ∆T
and highly volatile fluids, the overall heat transport between the
end walls is dominated by the latent heat associated with phase
change, and the heat flux balance gives

J0L =
∆T
ZT

, (62)

where

ZT = Zo + Zd, (63)

is the total net thermal resistance, Zo is the thermal resistance
due to conduction through the end walls and the liquid wedges
between the wall and the interface, and Zd is the diffusive re-
sistance of the gas layer [28]. While Zo can be considered in-
dependent of the air concentration, Zd depends sensitively on
c̄a.

Since heat flows though the end walls and the liquid wedges
between the wall and the interface sequentially, Zo is a sum of
the conduction resistances of the end walls Zw = δw/kw and
the conduction resistances of the liquid wedges Zl ≈ 0.5dl/kl,
yielding

Zo = 2(Zw + Zl) ≈ 2
δw

kw
+

dl

kl
. (64)

To determine Zd, we solve the system of equations (58) to-
gether with (59), which yields

J0 =
m1

vngD
ca

∂xcv. (65)

For volatile fluids, Ti is very close to Ts [19], so the concentra-
tion and temperature profiles are related. The phase equilibrium
condition (23) can be expressed in terms of the concentrations
using the relation

pv

p0
v

=
cv

c̄v
, (66)

where c̄v = 1 − c̄a, such that

1
Ti

=
1
T0
−

R̄v

L
ln

cv

c̄v
(67)

and consequently

∂xcv = −∂xca =
Lcv

R̄vT 2
i

τ, (68)

where τ = ∂xTi. Substituting the mean values for the concen-
trations and interfacial temperatture into (68) and (65) yields

J0 =
1 − c̄a

c̄a

m1
vngLD

R̄vT 2
0

τ̄, (69)
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c̄a = 0.96,∆T = 4 K, ∆ca = 5.14 × 10−3 c̄a = 0.96,∆T = 10 K, ∆ca = 1.13 × 10−2

c̄a = 0.70,∆T = 4 K, ∆ca = 3.70 × 10−2 c̄a = 0.70,∆T = 10 K, ∆ca = 7.18 × 10−2

c̄a = 0.50,∆T = 4 K, ∆ca = 5.5 × 10−2 c̄a = 0.50,∆T = 10 K, ∆ca = 1.05 × 10−1

c̄a = 0.30,∆T = 4 K, ∆ca = 6.48 × 10−2 c̄a = 0.30,∆T = 10 K, ∆ca = 1.22 × 10−1

c̄a = 0.08,∆T = 4 K, ∆ca = 4.68 × 10−2 c̄a = 0.08,∆T = 10 K, ∆ca = 9.14 × 10−1

c̄a = 0.01,∆T = 4 K, ∆ca = 1.03 × 10−2 c̄a = 0.01,∆T = 10 K, ∆ca = 2.08 × 10−2

Figure 7: Numerical results for air concentration ca = 1 − cv in the gas phase at ∆T = 4 K (left column) and 10 K (right column), with different c̄a. Solid lines
represent the twenty equally spaced level sets of the concentration fields. In the gas phase darker background indicates higher air concentration, while in the liquid
phase the concentration field is undefined.
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Figure 8: Mean mass flux Jg(x) in the gas phase (60) across the vertical cross-
section of the cavity at location x. The value is computed numerically at ∆T =

10 K with different average concentrations of air c̄a.
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Figure 9: Characteristic mass flux J0 as a function of the average concentration
of air c̄a at ∆T = 10 K. Solid line represents the analytical estimate based on
(62), symbols – numerical results obtained using (60) and (61).

where τ̄ = ∆T ′/L and ∆T ′ = T |x=L − T |x=0 is the temperature
difference between the inner surfaces of the hot and cold end
walls. The heat flux balance at the interface near either of the
end walls yields a relation similar to (62) which only includes
the diffusive resistance

J0L ≈
∆T ′

Zd
. (70)

Solving (7), (69), and (70) together, we find

Zd ≈
c̄a

1 − c̄a

R̄2
vT 3

0 L

DpgL
2 , (71)

where Dpg = D0 p0 is independent of c̄a according to (5). This
result corresponds to the effective condensation thermal con-
ductivity kc = L/Zd obtained by Peterson et al. [29].

With the solution for Zo and Zd, we can finally obtain the
analytical estimate for J0 using (62) and compare it with the
numerical result for J0, which is obtained using the numerical
solution of local mass flux given by (60) and (61). Fig. 9 shows
that the analytical and numerical results are in good agreement
over the entire range of c̄a, suggesting that the one-dimensional
description of transport in the gas phase is reasonably accu-
rate. Note that at ∆T = 10 K the flow is in the OMC regime
at c̄a = 0.96 (cf. Fig. 5), so the predictions of our simplified
transport model can be trusted far outside the SUF regime. As
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Figure 10: Normalized concentration profiles in the gas phase at ∆T = 10 K
for vapor (a) and (b) air with different c̄a. Numerical and analytical results are
represented by gray and black lines, respectively. Numerical results correspond
to the mid-height of the gas layer.

expected, the vapor flux is the largest when the air is removed
entirely from the cell. An increase in c̄a leads to an increase in
the diffusive resistance and, correspondingly, a decrease in the
vapor flux. The minor discrepancy between the numerical and
analytical results is likely due to the contribution of heat con-
duction and advection in the liquid layer that have been ignored
in our analysis of heat flux balance (62). These contributions
are negligible for low c̄a, but would become progressively more
important at higher c̄a, when phase change is suppressed, and
our estimates of J0 are expected to overestimate the numerical
results, consistent with Fig. 9. In practical applications (e.g.,
for heat pipes) the liquid layer will be substantially thinner, so
convective heat flux would be negligible and the prediction of
our simplified transport model would be even more accurate.

To compare the analytical prediction (52) for the concentra-
tion profiles with the numerical results, we need to determine
the constants C0 and C1 in (52) or (54). When the concentra-
tion profile can be considered one-dimensional (i.e., for ε � 1),
the solution (52) can be obtained directly from the second of the
two equations in (58) which yields

∂xca = −
Pem

dg
ca. (72)
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The average value of air concentration satisfies

1
L

w L

0
cadx = c̄a, (73)

so that

ca = 1 − cv = c̄a
PemΓge−Pemχ

1 − e−PemΓg
. (74)

Note that Pem can be computed from (53), (59), and (69) as
long as the relation between τ̄ and ∆T is known.

As Fig. 10 illustrates, we find rather good agreement between
the analytical predictions and the numerical results in the cen-
tral region of the cavity. In the general case, the concentra-
tions of both components in the gas mixture have an exponen-
tial profile. The concentration profiles become approximately
linear only when Pem � Γ−1

g . This limit corresponds to low
values of the mean flow velocity ūx and hence low values of
∆T and/or high values of c̄a. In particular, for ∆T = 10 K,
we have Pem < Γ−1

g for c̄a > 0.08, and the concentration pro-
files indeed become essentially linear for c̄a & 0.08 as shown
in Fig. 10. The deviations noticeable at low c̄a are mainly due
to the breakdown of our assumption that phase change at the
interface is negligible.

Substituting (72) into (68) and replacing Ti with T0 we find

τ =
R̄vT 2

0

dgL

Pemca

1 − c̄a
. (75)

This expression shows that the interfacial temperature profile
is linear, quadratic, or exponential when the air concentration
profile is constant, linear, or exponential, respectively. This
is illustrated in Fig. 11, which shows that the analytical esti-
mates for the interfacial temperature agree well with numerics.
These results are in stark contrast with the very common as-
sumption of linear temperature profile made in modeling heat
pipes. While the temperature profile may indeed be linear in
experiments with relatively small Γg and conducted at atmo-
spheric pressure, the condition Pem � Γ−1

g will most certainly
not be satisfied for high-aspect-ratio heat pipes operating at low
c̄a, where the temperature profile will be exponential. Similarly,
these results show the limitations of linear stability analysis of
this flow [27] which assumed τ to be constant. In fact, the dis-
crepancy between the numerical results and predictions of the
linear stability analysis in this limit found in Fig. 5 are likely
due in part to the deviation of τ from a constant. Another rea-
son for the discrepancy is that the linear stability analysis breaks
down at low c̄a due to the wavelength of the instability becom-
ing comparable to the system size L.

Whether the temperature profile is linear or not, the mean
value of the interfacial temperature gradient can be found by
substituting ca = c̄a into (75), which yields

τ̄ ∝
c̄a

1 − c̄a
Pem =

c̄a

1 − c̄a

J0dg

m1
vngD

∝
c̄a

1 − c̄a
J0, (76)

where ngD = pgD/(R̄T0) is independent of c̄a and J0 can be
obtained using the expression (62). At low air concentration,
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Figure 11: Interfacial temperature at ∆T = 10 K with different c̄a. The variation
δTi = Ti − T0 about the mean is plotted. Numerical and analytical results are
represented by gray and black lines, respectively.

thermal resistance is dominated by the contribution Zo, which
is independent of c̄a. Hence J0 is also independent of c̄a and
τ̄ ∝ c̄a∆T/L. In particular, in the limit c̄a → 0 we also have
τ̄ → 0, consistent with our previous finding [19]. At high air
concentration, thermal resistance is dominated by the contribu-
tion Zd given by (71). Hence, J0 ∝ (∆T/L)(1 − c̄a)/c̄a, such
that τ̄ ∝ ∆T/L is independent of c̄a. This is consistent with the
results of both numerical simulations [17] and experiments [25]
which found that the interfacial velocity (and hence thermocap-
illary stresses) remain essentially constant for c̄a & 0.14.

Fig. 12 shows that our theoretical predictions match the nu-
merical results for the interfacial temperature gradient at low c̄a,
but overestimate them at high c̄a. The reason is the breakdown
of our assumption that conductive and convective heat transfer
in the liquid layer is negligible. Numerical simulations show
that τ̄ = ∆T/L only at sufficiently low ∆T . At higher ∆T we
have [16]

∆T
L
≈

1 + aτ̄2

1 + bτ̄2 τ̄ ≥ τ̄, (77)

where a and b ≤ a are parameters that dependent on c̄a and the
geometry of the liquid layer. In particular, the data in Fig. 12
corresponds to numerical simulations for ∆T = 10 K, where
strong convection in the (relatively thick) layer makes the rela-
tionship between τ̄ and ∆T/L nonlinear. For thin liquid layers
characteristic of, e.g., heat pipes, both conductive and convec-
tive heat transfer in the liquid phase can be ignored, so our theo-
retical description should be quite accurate over the entire range
of c̄a.

In conclusion of this section, let us return to the issue of va-
lidity of the one-dimensional solution (52) for the concentration
profile. The value of ε can be easily estimated in the practically
important case c̄a → 0. In this limit, the gas velocity is much
larger than the liquid velocity, so the flow profile in the gas
layer in the central region is nearly parabolic and symmetric
about its mid-height, so maxζ |ũx| = |ūx|. Furthermore, diffusive
resistance Zd is negligible and, since the wall material (fused
quartz) is a far better thermal conductor than the liquid (sili-
cone oil), Zg ≈ Zo ∼ dl/kl. Substituting (59) and (62) into (53)
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Figure 12: The mean value of the interfacial temperature gradient τ̄ as a func-
tion of the average air concentration c̄a at ∆T = 10 K. Numerical and analytical
results are represented by solid line and symbols, respectively.

and (56) we find

Per = Pem =
∆Tdg

m1
vngDLZg

∼
dg

dl

µl

µv
Scv E, (78)

where Scv = νv/D is the Schmidt number for the vapor and

E =
kl∆T
µlL

(79)

is the evaporation number [30]. The analytical solution (52)
provides a good approximation when ε � 1, which is equiva-
lent to

∆T � Sc−1
v

dl

dg

µvL

kl
≈ 27 K. (80)

In particular, for ∆T = 10 K, Eq. (78) yields Per = Pem = 0.37,
which is very close to the value (0.4) obtained numerically (cf.
Fig. 6).

In the opposite limit (e.g., at atmospheric conditions), diffu-
sive resistance dominates, Zg ≈ Zd, so with the help of (71) we
find

Pem ≈
∆Tdg

LZg
=

1 − c̄a

c̄a

L

R̄vT0

dg

L
∆T
T0

, (81)

which, as Fig. 6 illustrates, vanishes as c̄a → 1. The recircu-
lation component of the flow in this limit can be estimated by
balancing the viscous and thermocapillary stresses [17]

maxζ ũx ≈
1
4
γdl

µl
τ̄ ∼

1
4
γdl∆T
µlL

, (82)

which yields

Per ∼
1
4
γdldg∆T
µlLD

=
1
4

1
1 − c̄a

γdldg∆T p0
v

µlLD0 p0
. (83)

As our estimate shows and numerical data presented in Fig. 6
confirms, Per diverges at c̄a → 1, however the product of the
two Peclet numbers approaches a constant

ε ∼
1
4
γdlL

µlR̄vD0

p0
v

p0

d2
g

L2

∆T 2

T 2
0

. (84)

In particular, we find that ε � 1 when

∆T � 2
L
dg

[
µlR̄vD0

γdlL

p0

p0
v

]1/2

T0 ≈ 34 K. (85)

Note that the estimate (82) and hence (83) and (85) is conserva-
tive since, for ∆T & 10 K, the interfacial temperature gradient
τ̄ is only a fraction of ∆T/L (a third to a quarter for c̄a = 0.96
[16]).

To sum up, for the silicone oil studied here, our estimates
suggest that the one-dimensional approximation (52) should
hold for any c̄a as long as ∆T is around 10 K or less; the
more general expression (54) has to be used for larger tempera-
ture gradients. Indeed, our numerical simulations show that the
concentration profile develops noticeable variation in the verti-
cal direction only for ∆T & 10 K. For comparison, the onset
of convection pattern (SMC regime) at atmospheric conditions
corresponds to ∆T ≈ 4 K in this geometry [16, 25]. It should
be noted that some of our assumptions (most notably, that phase
change at the interface is negligible) start to break down when
convection pattern develops, which leads to spatial modulation
developing on top of the (nearly linear) interfacial temperature
profile (see, e.g., Fig. 5 in Ref. [16]).

5. Summary

We have formulated and implemented numerically a gener-
alized two-sided transport model for two-phase flow of non-
isothermal volatile fluids which accounts for momentum, mass,
and heat transport in both phases, as well as phase change at the
liquid-gas interface. The model is valid for arbitrary composi-
tion of the gas phase, described in terms of the average con-
centration of air c̄a here. It has been thoroughly validated by
comparing its predictions both against other numerical models
in the limiting cases c̄a → 1 and c̄a → 0 and against experi-
mental observations [25] and linear stability analysis [27] over
the entire range of c̄a, . The model has been used to study the
flow of low viscosity silicone oil confined in a sealed cavity
and driven by a horizontal temperature gradient. In particular,
we have investigated how the flow changes when the pressure
inside the cavity, and with it the composition of the gas layer,
changes. Numerical simulations reported here and elsewhere
[16, 19, 17] show that the flow in the liquid layer is very differ-
ent between the limits c̄a → 0 and c̄a → 1.

In order to understand these differences, we have developed
a simplified transport model which showed that, somewhat sur-
prisingly, for c̄a > 0, it is the gas layer that controls the flow
in the liquid layer. More specifically, mass transport in the gas
layer determines its local composition, the interfacial temper-
ature, and hence the thermocapillary stresses which drive the
flow in the liquid layer. Quite interestingly, we found that, in
high-aspect ratio geometries (such as the interior of a heat pipe),
the mass transport in the gas layer remains diffusion-dominated
and hence independent of the flow, even in the limit when the
traditionally defined Peclet number, which corresponds to our
Per, becomes large compared to unity. We have shown that
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mass transport is in fact described by two different Peclet num-
bers – Per which describes recirculation, and Pem which de-
scribes the mean flow – and that it is the product ε = PerPem

that controls whether mass transport in the gas phase is domi-
nated by diffusion or advection. We have also shown that, for
small to moderate imposed temperature gradients, ε remains
small regardless of the composition of the gas phase.

Our simplified transport model has not just qualitatively ex-
plained a range of numerical and experimental results, it was
also found to be capable of producing quantitatively accurate
predictions. For instance, it correctly predicted the concentra-
tion profile in the gas phase and the interfacial temperature pro-
file over the entire range of c̄a. In particular, we found that
the interfacial temperature profile is generally exponential, not
linear as assumed by many one-sided transport models of two-
phase flows. The assumption of linearity can be justified in the
limit c̄a → 1 (e.g., at atmospheric conditions), but not in the
practically important limit c̄a → 0. Furthermore, the model
correctly predicted the dependence of the net vapor flux (and
hence the net heat flux) and the average interfacial temperature
gradient (and hence thermocapillary stress) on c̄a. Finally, it is
worth pointing out that although the simplified transport model
is formally valid only in the steady unicellular flow regime, it
was found to give reasonably accurate predictions even when
convection rolls appears.
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