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Abstract

The present study is prompted by the failure of conventional chaos control theory to

provide a practically sound algorithm for controlling the chaos in general spatially

extended experimental systems. The primary reason for this failure is the presence of

symmetry, which is a feature of most extended dynamical systems and which violates

a number of assumptions of genericity made by conventional control theory. These

assumptions can be relaxed, but at a price that increases with increasing symmetry

of the target state. This price includes the larger number of independent control

parameters that must be adjusted to steer the system towards the target trajectory,

as well as the larger number of independent observables required to reconstruct the

dynamics of an experimental system with symmetries.

We show that spatially extended chaotic systems can be controlled by monitoring

and perturbing them at multiple spatial locations, or pinning sites, with separations

determined by the noise in the system. We show that the arrangement of pinning

sites must comply with constraints determined by the symmetry of the system in

order to achieve control. We determine how the system can be forced from the

spatiotemporally chaotic state into the controllable target state. Finally, we determine

the maximal distance between pinning sites and the maximal level of noise tolerated

by a given arrangement of pinning sites for a model extended system.
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Chapter 1 Introduction

1.1 Motivation

The desire to improve performance of many practically important systems and de-

vices often calls for shifting their operating range into a highly nonlinear area, which

after a series of bifurcations usually leads to irregular chaotic behavior. This kind of

behavior, however, is rarely desired, while substantial benefits could be obtained by

making the dynamics regular. This goal can typically be achieved by applying small

preprogrammed perturbations to steer the system towards a periodic orbit with de-

sired properties, which is broadly referred to as chaos control.

The most difficult type of chaos to control, the spatiotemporal chaos is ubiquitous

in spatially extended nonlinear systems and manifests itself in phenomena such as

turbulence [1], plasma [2] and combustion [3] instabilities, cardiac arrhythmia [4], and

brain epilepsy [5]. The majority of spatiotemporally chaotic systems are continuous

and are properly described by partial differential equations, but some are spatially

discrete and as such admit a description in terms of coupled ordinary differential

equations (or sometimes delay differential equations). Nevertheless, all these systems

share enough common features, especially in their spatial structure, to be treated in

a unifying framework.

The list of practically important systems and devices displaying spatiotemporal

chaos which could benefit from application of control is rather long, so we mention

just a few characteristic examples. For instance, stabilization permits the operation

of chemical reactors [6] beyond the normal limit of their stability, which may be

desirable for increased thermodynamic efficiency, product yield, or product purity.

Wide aperture semiconductor lasers [7] display uncontrolled random beam steering

and loss of spatial coherence at high pumping levels needed to achieve desired output.

Neural networks [8] require control in order to be placed in an adequate (intrinsically

unstable) state for information processing. Finally, power grids are unstable to certain
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types of electrical instabilities, which in the absence of control could lead to power

surges, overload and failure of constituent components.

Unfortunately, despite all the success achieved in recent years in controlling rela-

tively simple low-dimensional chaotic systems, most high-dimensional systems (with

tens or more effective degrees of freedom), those just mentioned included, remain

notoriously difficult to control and little progress has been made so far in the im-

plementation of existing control techniques. In fact, discounting stirred chemical

reactors, whose evolution has no spatial dependence [6; 9], there have been no reports

of successful control achieved in experimental spatially extended chaotic systems up

to date. This situation is not very surprising given the absence of a general theory

for control of spatiotemporal chaos.

Spatially extended homogeneous systems can, in principle, be treated as a special

case of high-dimensional chaotic systems [10; 11; 12]. However, some of the practical

issues that arise in the control problem are quite specific and are probably best han-

dled by taking into account the spatiotemporal structure of the system and the target

state in general, and their symmetry properties in particular [13]. More important

from the theoretical point of view, the spatiotemporal structure with common charac-

teristic features possessed by various extended systems provides the natural context

for analysis and reevaluation of the existing techniques and results.

Although spatially extended chaotic systems are the primary focus of our attention,

arbitrary symmetric systems are, arguably, as interesting and important. Hence, by

making our analysis as general as possible, we can hope to obtain many results whose

range of applicability far exceeds the class of systems that motivated the present study.

Therefore, our goal can be summarized as an attempt to correct some of the short-

comings of the existing theory and make the first step towards developing a general,

thorough and consistent control formalism applicable to symmetric chaotic systems,

in general, and spatially extended chaotic systems, in particular. Such formalism

requires collection, systematization and development of the fragmentary results and

methods of data analysis, deterministic chaos, linear systems and control, and group

theory.
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1.2 Outline

The outline of the thesis is as follows. In chapter 2 we begin with an overview of the

theoretical advances in the area of controlling spatiotemporal chaos. We review and

compare the techniques proposed by various authors to suppress chaos and target

unstable steady and periodic states with desired properties in systems described by

partial differential equations, coupled ordinary differential equations and coupled map

lattices. We also formulate a number of defining questions to be answered by the rest

of this study.

In chapter 3 we proceed with an overview of the data analysis techniques used to

reconstruct the spatiotemporal dynamics of an experimental system displaying chaotic

behavior using a time series measurement of an output signal. We review the major

results concerning the continuous-time reconstruction of the global system dynamics

and discrete-time reduction using the Poincaré section technique. We then turn to

the question of local reconstruction and identification of recurring points and propose

a generalized algorithm applicable to periodic orbits of arbitrary periodicity. Finally,

we give a brief overview of noise reduction techniques proposed in the literature.

In chapter 4 we provide an expanded discussion of the results concerning the effects

of symmetry on the dynamics and control previously reported in [13]. We discuss

why the conventional control approach fails when applied to symmetric systems and

show how it should be modified in order to achieve control. In particular, we show

that when nontrivial symmetries are present one has to use multi-parameter control

as opposed to the single-parameter control used in the conventional approach. We

compare the results obtained for continuous- and discrete-time systems and study the

effects of weak symmetry violation. In the conclusion of the chapter we show that the

problem of phase space reconstruction is affected by symmetries in a manner similar

to the control problem. We discuss how the data collection and analysis have to

be modified to permit the reconstruction of symmetric chaotic attractors preserving

their symmetries.

In chapter 5 we turn to the problem of feedback control. We review and compare

the most widely used feedback control techniques developed on the foundations of
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nonlinear dynamics and control theory. We analyze two single-parameter general-

izations of the OGY control method and show how they can be extended for the

multi-parameter case. We also show that these methods, being derived in the as-

sumption of deterministic dynamics, become severely handicapped when applied to a

certain class of stochastic systems. This has profound effect on the problem of control

of extended chaotic systems, which is the primary focus of our attention. We also

review two general stochastic control methods which provide a systematic treatment

of the problem of feedback control as well as dynamic state reconstruction in the

presence of external noise and measurement errors.

In chapter 6 we apply the results of the preceding chapters to the problem of

controlling extended spatiotemporally chaotic systems. Following the previous study

[14], we introduce a stochastic generalization of the one-dimensional coupled map

lattice as our model, and argue that it is generic in the class of general extended

systems. We show that our model cannot be controlled by perturbing the global

system parameters and, therefore, calls for localized control. We analyze the method

of pinning control introduced by Hu and Qu [15] and show how it can be modified to

achieve greater flexibility, at the same time drastically reducing the density of pinning

sites. This brings us to the method of control using adjustable boundary conditions,

which proves to be extremely versatile and effective, allowing control of arbitrary

target states in a variety of conditions. Our results are illustrated with a number

of numerical experiments. We also discuss how the methods of pinning control and

control at the boundaries can be combined to obtain a scalable distributed control

approach applicable to systems of arbitrary size. In the conclusion we show how the

combination of the nonlinearity and stochasticity in our model leads to the blowup

of noise and loss of control and derive theoretical estimates on the size of the system

at which this happens.

Finally, we summarize our results in chapter 7 and discuss their implications for

the problem of controlling continuous (in space as well as time) extended chaotic

dynamical systems in an arbitrary number of dimensions.
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Chapter 2 Overview

2.1 Selective Targeting

In order to determine the missing components of a general theory for control of

spatiotemporal chaos we proceed with the analysis of theoretical advances in the

area. We begin by considering the class of methods designed not just to suppress

chaos, but more specifically, to target and stabilize a chosen unstable steady state or

periodic trajectory with desired properties. Historically the first to address the issue

of controlling spatiotemporal chaos, Hu and He [16] considered a one-dimensional

periodically driven system described by a nonlinear drift-wave partial differential

equation of the form

∂φ

∂t
+ α

∂3φ

∂t∂x2
+ β

∂φ

∂x
+ µφ

∂φ

∂x
+ γφ = ε sin(x− Ωt). (2.1)

Upon transforming into the moving frame z = x−Ωt, this partial differential equation

becomes autonomous and (as any other similar autonomous PDE) can be converted

into an equivalent system of ordinary differential equations expanding the solution

φ(z, t) in the basis of normal modes ψk(z) (which coincide with Fourier modes due to

the translational symmetry of equation (2.1), so index k is just a wave vector):

φ(z, t) = lim
N→∞

N∑

k=0

sk(t)ψk(z). (2.2)

Constructing an infinite-dimensional vector s(t) = [s1(t), s2(t), · · ·]T from the coeffi-

cients sk(t), and defining the vector of parameters u = [α, β, µ, γ, ε]T , one can write

the system of ODEs in the form

ṡ(t) = Φ(s(t),u), (2.3)

where Φ is some nonlinear function of coefficients sk(t) and parameters of the system.
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Hu and He suggested two ways to stabilize a prescribed unstable periodic solution

φ̄(x, t) = φ̄(x− Ωt) of (2.1). One can perturb an appropriately chosen normal mode

ψi(z) by adding a damping term Ψi(t) = −λsi(t) to the ith component of equation

(2.3), which can be interpreted as localized control in the Fourier space. Alternatively,

one can apply localized damping at a single point of the real space, adding a term such

as Ψi(x, t) = −λδ(x−x0)[φ(x, t)− φ̄(x−Ωt)] to the right-hand side of equation (2.1).

The first type of feedback is somewhat more difficult to implement experimentally

than the second one, because the system has to be perturbed at every point of the

real space, but it can, in principle, be implemented for the majority of spatially

extended systems. In addition, the first type of feedback requires the knowledge of

the dynamical equations, while the second one does not.

As a result of a series of numerical experiments, it was determined that, when

the first type of feedback was used, for some choices of the mode number i, the

values of damping λ and system parameters u the stabilization of the target state

φ̄(x−Ωt) succeeded; for other choices it failed. Instead, the stabilization of a variety

of other periodic and quaziperiodic states was achieved, which can be traced to the

poor selectivity of this type of feedback. When the second type of feedback was

used, however, the target solution was stabilized more effectively, especially for large

damping λ.

We will make two comments regarding this control technique. First of all, although

the number of degrees of freedom is infinite, due to small size (x ∈ [0, 2π]) the system

is only weakly chaotic (the number of excited normal modes was estimated to be of

order N = 13) and, therefore, is rather highly correlated spatially. Second, although

the nondriven system is highly symmetric, the target state φ̄(x − Ωt) has a rather

low symmetry. It can be shown that both of these factors contribute to the success

of this technique (and are prerequisites of almost every other existing technique for

control of spatiotemporal chaos).

Another version of control in Fourier space (applicable to systems described by

PDEs as well as coupled ODEs) was proposed by Lourenco and Babloyantz [8]. They

suggested using the Poincaré surface of section to reduce a continuous-time evolution
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equation of the type (2.3) to a discrete-time map of the type

sn+1 = F(sn, u), (2.4)

where sn represents the value of the vector s(t) at the nth crossing of the surface

and u is a scalar system parameter. Assuming that only a small number of modes

are excited near the target state (the system is again weakly chaotic), the effective

dimensionality of the map (2.4) can be made finite (and small), thus reducing the

problem to the standard form used in conventional chaos control theory [10; 17].

The effectiveness of this approach was demonstrated numerically by stabilizing a

number of unstable periodic orbits of the small one-dimensional array of coupled delay

differential equations with different (but supposedly low) spatiotemporal symmetries.

This method differs from the one proposed in [16] in that the perturbation of the

system parameter u is used instead of direct perturbation of the state of the system,

which can also be relatively easily achieved experimentally. In either case, however,

a single control parameter is used.

Petrov et al. used the Poincaré surface of section technique to derive a control law

without using the dynamical equations. In a series of paper [3; 18] the authors consid-

ered the spatially extended combustion model described by a Kuramoto-Sivashinsky

equation
∂φ

∂t
=

(
∂φ

∂x

)2

− ∂2φ

∂x2
− ∂4φ

∂x4
, (2.5)

where the variable φ(x, t) represents the planar front of a premixed flame. However,

instead of a map of the type (2.4) describing the evolution of the system between

successive crossings of the Poincaré section in the Fourier space, a similar map in real

space was constructed using the measurement of a scalar function ξ(t) of the state

φ(x, t) of the system in the vicinity of the targeted orbit φ̄(x, t). There is a single

parameter in the model, the length l. The system was considered for the values of

l where the dynamics are weakly chaotic, i.e., only a few normal modes are excited

and, as consequence, the constructed map is effectively low-dimensional, so that the

system could again be treated using the tools of conventional chaos control theory. It

was demonstrated numerically that control can be achieved by perturbing one of the
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boundary conditions. A very similar approach was used by Tziperman et al. [19] in

order to control spatiotemporal chaos in a model used for weather prediction.

As an alternative to the above approach Petrov et al. suggested using the method

of transfer functions borrowed from control theory [20]. This method combines the

two steps of the control problem, construction of the Poincaré map and calculation of

feedback into a single step, which simplifies the analysis of the data obtained from an

experimental system to a certain degree. This method was used to stabilize steady

and periodic unstable flame profiles of the model (2.5) [18] as well as unstable Turing

patterns in a reaction-diffusion system described by the Gray-Scott model [21]. In

both cases the symmetry of the targeted states was relatively low and the systems

where rather highly correlated spatially.

2.2 Suppression of Chaos

In addition to the three control techniques already described, a number of other,

much less sophisticated, techniques based on incorporating preset time delays in the

feedback law have been proposed. Despite being conceptually simple, techniques of

this type, as a rule, provide very poor selectivity and thus should be regarded as

methods to suppress spatiotemporal chaos in favor of some sort of periodic behavior,

rather than methods to stabilize a chosen unstable periodic trajectory. One of the

simplest such methods was suggested by Battogtokh et al. [22], who considered the

complex Ginzburg-Landau equation

∂φ

∂t
= (1− iω)φ+ (1 + iα)

∂2φ

∂x2
− (1− iβ)|φ|2φ, (2.6)

describing a large class of (very weakly chaotic, again!) systems undergoing a bifur-

cation from regular oscillations to spatiotemporal chaos. One can use a time delayed

global feedback proportional to the spatial average of the field φ(x, t), which corre-

sponds to adding to the right-hand side of equation (2.6) a term

Ψ(x, t) = −λeiχ〈φ(x, t− T )〉x, (2.7)
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where T is the time delay. Parameters λ and χ are the magnitude and phase of the

feedback, which depending on the phase can act as either damping or amplification

of the spatially uniform mode ψ0(x) = const. This type of feedback obviously favors

uniform time-periodic states with period T , i.e., states with very high spatial sym-

metry. In the numerical experiments it was established that the uniform steady state

was indeed stabilized for χ = 0 (damping) and certain choices of the delay T , while

choosing χ 6= 0 resulted in the stabilization of oscillating cellular patterns. Similar

type of feedback was used to suppress chaos in coupled ODEs [8], and coupled map

lattices [23].

In order to facilitate the stabilization of nonuniform target states, one has to use

a modification of the latter technique, which uses local values of the field φ(x, t)

instead of its spatial average. This sort of generalization was used by Bleich and

Socolar [24] for the stabilization of traveling wave solutions of the complex Ginzburg-

Landau equation (2.6). Certain unstable periodic states can be stabilized by applying

the signal constructed from the time-delayed state of the system as feedback at every

point in space, which corresponds to adding to the right-hand side of equation (2.6)

a term

Ψ(x, t) =
∞∑

n=1

λn[φ(x, t)− φ(x, t− nT )], (2.8)

where T is the period of the targeted unstable state (e.g., traveling wave) and {λn}
is a sequence of damping coefficients (one should obviously have

∑
n |λn| = λ <∞).

This type of feedback is known as extended time-delay auto synchronization, and it

has been successfully applied to a number of low-dimensional chaotic systems [25].

Similar types of feedback were suggested to control spatiotemporal chaos in systems

described by coupled ODEs [8] and coupled map lattices [23]. Stabilization of a

variety of unstable periodic orbits was demonstrated numerically.

Similarly to the case of delayed global feedback, this type of control does not

require the knowledge of dynamical equations and has rather poor selectivity with

respect to target states with desired properties. Since one can only adjust the time

delay to match the period T of the targeted state, the stabilization is a matter of

luck rather than choice. Besides, the area of practical applicability of this approach
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is extremely limited. Apart from optical systems, implementing this type of feedback

in continuous systems borders on the impossible due to the fact that it uses a number

of control parameters equal to the number of degrees of freedom, which is infinite.

Even in application to spatially discrete systems the complexity of this method will

likely prevent it from ever being used in practice.

The selectivity of the latter method can be improved by introducing spatial filtering

of the field φ(x, t). The methods proposed by Lu et al. [26] and Bleich et al. [7] can

be represented in the same general form by writing the feedback term as

Ψ(x, t) =
∞∑

n=1

λn

[
φ(x, t)−

∫
K(x, x′)φ(x′, t− nT )dx′

]
, (2.9)

where K(x, x′) is the kernel of the filtering operator, which is assumed to be chosen

appropriately for each target state. The global and local delayed feedback discussed

above clearly correspond to choosing K(x, x′) = const and K(x, x′) = δ(x − x′),

respectively. This type of feedback is again effectively equivalent to using an infinite

number of control parameters in continuous extended systems and thus is limited

to applications for optical systems. Control of unstable traveling wave states was

achieved in the numerical model of a single longitudinal mode laser [7]. A version of

this technique for coupled ODEs [8] also exists.

2.3 Pinning Control

We have seen a number of times that successful control of spatiotemporal chaos by

applying feedback at a single spatial location was achieved only in systems which

possessed a high degree of spatial correlation. This, however, does not imply that

weakly correlated systems require application of feedback at every point in space. A

more economical and flexible approach is to monitor and perturb the system at mul-

tiple locations separated by the characteristic length which depends on the strength

of noise and other system parameters. This approach was called pinning control

[15], and spatial locations used for feedback were respectively termed pinning sites or

pinnings.
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A number of relatively successful attempts were made to employ pinning control

for stabilizing unstable states in spatially discrete systems such as coupled ODEs [27]

and coupled map lattices with symmetric coupling [15]

φt+1
i = εf(φt

i−1) + (1− 2ε)f(φt
i) + εf(φt

i+1). (2.10)

The results can be summarized as follows. It was numerically demonstrated that

a variety of unstable steady states and periodic trajectories could be successfully

stabilized. This, however, required an extremely high density of pinnings, with the

distance between adjacent pinnings no larger than four and three lattice spacings in

the case of the coupled map lattice and coupled ODEs, respectively.

Significantly lower density of pinnings can be used in the case of coupled map

lattice with broken symmetry

φt+1
i = ε1f(φt

i−1) + (1− ε1 − ε2)f(φt
i) + ε2f(φt

i+1), (2.11)

where ε1 6= ε2. This surprising, at first sight, result has nothing to do with the spatial

correlations in the system. On the contrary, as we will see below, it can be explained

by the difference in symmetry properties of equations (2.10) and (2.11). Successful

control of the steady uniform target state of the model (2.11) has been achieved [28]

with the distance between pinnings of up to 14 sites, in the presence of noise of relative

magnitude σ = 10−10.

Bleich and Socolar [24] formulated three questions which should be answered by a

consistent general theory of controlling spatiotemporal chaos: What is the minimum

density of discrete controllers (actuators) needed in situations where spatially contin-

uous processing in the feedback loop is not possible (i.e., almost always)? What level

of noise can be tolerated? How can one force the system from the spatiotemporally

chaotic state into the desired controllable state? Detailed examination of the problem

reveals that one more question has to be added to the above list: How should the spa-

tial locations at which the system is monitored and perturbed be arranged? This last

question is prompted by the intrinsic symmetries characteristic of spatially extended

systems.
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Even though the importance of symmetries in chaotic dynamics has been recog-

nized by a number of authors [29; 30; 31; 32], symmetric systems did not receive

adequate treatment in the general framework of chaos control primarily because the

question of symmetry is largely ignored by the theory of deterministic chaos as well

as data analysis and control theory. All three disciplines regard symmetric systems as

nongeneric and, therefore, not very interesting and important. However, many prac-

tically important dynamical systems, such as spatially extended chaotic ones, are

intrinsically nongeneric, and thus cannot be successfully treated using the formalism

developed for generic systems.
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Chapter 3 System Identification

3.1 Time Delay Embedding

The primary challenge one faces when presented with an objective to defeat the

chaotic behavior in a real continuous-time experimental system is to determine the

laws governing the dynamics or, in other words, construct a mathematical model of

that system using the experimental data. For now, we will assume that the system

under consideration is deterministic, and defer the treatment of stochastic systems

until chapter 5. We will also assume that the evolution takes place on a finite-

dimensional chaotic attractor A and the actual dynamical equations can be written

in the form

ṡ(t) = Φ(s(t),u, t), (3.1)

where s(t) ∈ Q is the ns-dimensional state of the system, u ∈ Rnu is the nu-

dimensional vector of system parameters, and Φ denotes an unknown vector field

on the phase space manifold Q. For generality we will assume that ns is arbitrary

(or even infinite) and nu ≥ 1. Although the particular form (3.1) of the dynamical

equations limits the generality of the proposed approach by excluding the systems

described by differential algebraic equations, it directly bears on the validity of the

following results, and thus is essential here.

We are primarily interested in the two special cases of the dynamical equation

(3.1), which represent the two classes of systems most often encountered in practice,

autonomous and periodically driven. First, consider an autonomous system for which

∂tΦ(s(t),u, t) = 0 and, therefore,

ṡ(t) = Φ(s(t),u). (3.2)

The complete information about the state of an experimental system is rarely avail-

able, so one typically has to contend with having a measurement of a single scalar
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output of the system (sometimes called an observable) for the description of the dy-

namics. The output is, in general, a function of the (unknown) internal state of the

system s(t):

y(t) = G(s(t)). (3.3)

It turns out that it is possible to reconstruct both the internal state of the system

and its dynamics based on the time series measurement of the output y(t) using the

procedure originally proposed by Packard et al. [33]. The easiest way to obtain

several signals from a single one is to use time delays. Let us choose different delay

times T1, T2, · · · , Tnz and construct an nz-dimensional delay coordinate vector

z(t) =




y(t+ T1)

y(t+ T2)
...

y(t+ Tnz)



. (3.4)

Takens showed [34] that for a scalar output (3.3) and conveniently chosen delay

times Ti, if the dimension nz of the embedding space is such that nz ≥ 2nh
s + 1,

where nh
s is the Hausdorff dimension of the attractor A, the map P : s(t) → z(t)

generically provides a global one-to-one representation of the attractor and, hence,

the system state. As we will see below, the genericity assumption in the Takens’

embedding theorem is not satisfied for most of the extended systems due to the

symmetry-related degeneracy of the evolution operators. However, since the rest of

the algorithm only depends on the existence of the global embedding P, we proceed

with the discussion assuming that the theorem holds and consider the modifications

required for nongeneric systems in section 4.5.

Since the Hausdorff dimension of the chaotic attractor is often much smaller than

the number of degrees of freedom, nh
s ¿ ns, even for systems of high dimensionality

an unambiguous representation of the system state can usually be obtained in an

embedding space of rather low dimensionality. For instance, Roux et al. [35] have

shown that the state of the Belousov-Zhabotinskii system, which is described by more

than 30 independent variables, can be represented nicely in R3. Even more important,

as long as nh
s <∞, the reconstruction technique can be successfully applied to infinite-
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dimensional systems, such as those described by partial differential equations. Several

authors, including Romeiras et al. [17], further suggested that, if only a local one-to-

one representation of the state in the vicinity of some periodic trajectory is needed,

nz = nh
s is typically sufficient, decreasing the dimensionality of the embedding space

even further.

The next step in the procedure allows one to recreate the dynamical equations.

In principle, it is possible to extract the necessary information about the dynamics

using the continuous-time measurement of the reconstructed state z(t). However,

the trajectory generated by z(t) is usually very complicated and may be difficult to

interpret. A small number of methods exist [36; 37], which allow one to recreate

the system of ordinary differential equations of the form (3.2) using the reconstructed

trajectory, but they are neither general nor precise enough for the control purposes. In

the conclusion of this section we mention that in cases where the mathematical model

of an infinite-dimensional extended system is available, the trajectory z(t) and the

finite-dimensional representation of the dynamical equations can be obtained using

the Galerkin method [38].

3.2 Discrete-Time Reduction

The problem of reconstructing the dynamical equations can be simplified substantially

by using the Poincaré section technique [33], which reduces the continuous trajectory

z(t) in the nz-dimensional embedding space to a set of points in its (nz−1)-dimensional

subspace. Let us define the Poincaré surface of section by the equation φ(z(t)) = 0.

The crossings of the surface by the trajectory of the system generate a sequence of

times t0, t1, t2, · · ·, which subsequently define a sequence of points zk = z(tk) through

the delay embedding. The choice of delay times Ti is, in principle, arbitrary, but most

often a sequence of delay times Ti = (i−1)TD is used, where TD < 0 is a negative basic

delay (see, for example, [12; 17]). This choice is not always convenient for the purpose

of real-time data acquisition, since it requires an a priori knowledge of the reference

times tk. To correct the situation we take TD > 0 instead. For instance, if one sets

φ(z(t)) = z1(t) − c, where c is a constant, one can extract the components of the
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vectors zk from the measured signal y(t) in real-time mode by testing the condition

y(tk) = c to determine tk and then measure zk
i = y(tk + (i− 1)TD) for i = 2, · · · , nz.

The reconstruction of periodically driven systems can be handled in a very similar

manner. If we denote the period of the driving signal TF , then we should have

Φ(s(t),u, t+ TF ) = Φ(s(t),u, t). Since the driving defines a natural frequency in the

system, one can use the stroboscopic technique to define a sequence of reference times

t0, t1, t2, · · · using the period of driving instead of the Poincaré section. Specifically,

one takes tk = t0+kTF . A sequence of points zk = z(tk) is then determined identically

to the case of an autonomous system.

Since the dynamics is deterministic, if the system parameters are fixed, u = ū,

then zk determines zk+1, hence defining the first return map F̃ : Rnz × Rnu → Rnz

zk+1 = F̃(zk, ū). (3.5)

In the control problem system parameters are kept constant during the intervals

t ∈ [tk, tk+1], but they are changed discontinuously at the times tk, so equation (3.5)

has to be modified. In general, zk+1 would depend on zk as well as the history of

change in u(t) during the time interval t ∈ [tk, tk+1 + Tnz ]. Assuming that the largest

delay Tnz is chosen small enough, such that tk+1+Tnz < tk+2 for every k, and denoting

uk the value of the parameter vector u(t) in the interval t ∈ [tk+1, tk+2], one concludes

that the state of the system at time tk+1 depends on the values of parameters during

two successive intervals:

zk+1 = F̃(zk,uk,uk−1), (3.6)

which coincides with the equation obtained for negative basic delays [39].

Finally, let us introduce an expanded state-plus-parameter vector

xk =

[
xk

s

xk
u

]
=

[
zk

uk−1

]
(3.7)

and define a new map F : Rnx × Rnu → Rnx

F(x,u) =

[
F̃(xs,u,xu)

u

]
, (3.8)
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where nx = nz +nu. This allows equation (3.6) to be rewritten in a more conventional

form

xk+1 = F(xk,uk). (3.9)

It is important to realize that the maps (3.6) and (3.9) represent nothing but two com-

pletely equivalent descriptions of the same dynamics in two different spaces and either

description can be used depending on the circumstances. We will predominantly use

the map (3.9), since it has the form required by conventional control theory.

When the sequence of states xk and the map (3.9) are reconstructed from the

output y(t) of the experimental system, it can be claimed that the dynamics of the

system is essentially understood. However, even though in certain cases (such as the

Belousov-Zhabotinskii system [35]) finding the nonlinear map F that fits the data

well enough is relatively easy, this can rarely be achieved for typical high-dimensional

systems. One, therefore, has to look for a more practical and economical way to

describe the system.

3.3 Periodic Trajectories

Fortunately, the problem can be simplified even further by stripping the redundant

information about the global structure of the chaotic attractor A contained in the

dynamical equation (3.1). Indeed, the closure of the attractor, Ā, can be thought of

as a union of an infinite number of unstable periodic orbits and thus the vector field

Φ contains the information about all these orbits. For the purpose of control just

one such orbit s̄(t) is selected as the target state. It turns out that one only needs to

know the local properties of the equation (3.1) in the vicinity of the target state in

order to drive the system towards it using the method of linear feedback control.

As a result of the equivalence between the full description of the system in terms of

the differential equation (3.1) and its reduced description in terms of the map (3.6),

continuous-time periodic trajectories are mapped to discrete-time periodic trajecto-

ries. Indeed, consider the projection P : s̄(t) → z̄(t) of the target trajectory into the

embedding space. As discussed above, the crossing of the Poincaré section by the

reconstructed trajectory z̄(t) generates a sequence of points z̄0, z̄1, · · ·. On the one
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hand, if the target trajectory s̄(t) is time-invariant, so is z̄(t) and, therefore, z̄k+1 = z̄k

for every k, which corresponds to a fixed point of the map (3.6). On the other hand,

if s̄(t) is time-periodic, s̄(t+ T ) = s̄(t), then z̄(t) is also time-periodic with the same

period T . Obviously, if z̄(t) crosses the Poincaré surface of section τ times during

the first period t ∈ [0, T ], it will do so during each of the consecutive periods, thus

generating the discrete-time trajectory z̄k with period τ , z̄k+τ = z̄k. Defining

x̄k =

[
z̄k

ū

]
, (3.10)

we can conclude that each periodic trajectory s̄(t) of the original system can be repre-

sented either by a periodic trajectory z̄1, · · · , z̄τ of the map (3.6) or by an equivalent

periodic trajectory x̄1, · · · , x̄τ of the map (3.9) with τ ≥ 1. From now on we can,

in principle, assume that the dynamics of the experimental system is described by

the discrete-time evolution equation (3.9) and its target states are represented by the

periodic trajectories of the map F.

In addition, one can claim that the local properties of the differential equation (3.1)

in the vicinity of the target state s̄(t) are completely described by the linearization of

the map (3.9) about the respective periodic trajectory x̄k. Denoting the displacement

from the target trajectory x̄k as ∆xk = xk − x̄k and the perturbation of the control

parameters relative to the equilibrium values of parameters ū as ∆uk = uk − ū, one

obtains the following linearized evolution equation in the tangent space Rnx :

∆xk+1 = Ak∆xk +Bk∆uk. (3.11)

Here we introduced the notations

Ak = DxF(x̄k, ū) (3.12)

for the Jacobian of the transformation (3.9) and

Bk = DuF(x̄k, ū) (3.13)

for the linear response of the system to changes in the control parameters, which we
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call the control matrix. Clearly, the matrices Ak and Bk are periodic in the index k

with the same period τ as the target trajectory, Ak+τ = Ak and Bk+τ = Bk.

For practical purposes, however, it is often more convenient to use a similar lin-

earization constructed for the map (3.6). Denoting ∆zk = zk − z̄k, one obtains:

∆zk+1 = Ãk∆xk + B̃k
1∆uk + B̃k

2∆uk−1. (3.14)

The matrices Ak and Bk can be trivially reexpressed in terms of Ãk, B̃k
1 , and B̃k

2 using

the definition (3.8):

Ak =

[
Ãk B̃k

2

0 0

]
, Bk =

[
B̃k

1

I

]
. (3.15)

(This equation itself is often taken as the definition of Ak and Bk, e.g., in Ding

et al. [10].) The set of matrices {Ak, Bk} (or {Ãk, B̃k
1 , B̃

k
2}) completely determines

the local dynamics of the system in the tangent space and, therefore, provides all

the essential information needed for the solution of the control problem. The only

difficulty is neither the map (3.9) nor the periodic trajectory x̄1, · · · , x̄τ , which we

used to formally define the Jacobian and the control matrix, are known.

3.4 Local Reconstruction

In fact, it is much easier to extract the periodic trajectory and the matrices Ãk, B̃k
1 and

B̃k
2 directly from the experimental data using the well-known technique of recurring

points [40; 41] than it is to find the map (3.9) and then use it to calculate Ak and Bk

from the definitions (3.12), (3.13). The additional benefit of using the linearized form

of the dynamical equations is that the maximal dimension of the embedding space

required for the reconstruction is reduced from 2nh
s + 1 to nh

s .

Since the Hausdorff dimension of the attractor is unlikely to be known for an

experimental system, the choice of the embedding dimension nz will typically have

to be made using trial and error. One then needs to generate, for the fixed system

parameters, u = ū, a sequence of points z0, z1, · · · , zN and select from it n, 1 ¿ n¿
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N , recurring points zr1 , · · · , zrn such that

|zr1 − zr1+τ | ≤ · · · ≤ |zrn − zrn+τ | ≤ min
k 6=rj

|zk − zk+τ |. (3.16)

A number ε is then chosen, and the recurring points zrj are sorted into classes Km

according to the following rule. The point zr1 always defines (becomes the center

of) the first class K1. The next recurring point zr2 is then attached to K1, if the

distance |zr1 − zr2| < ε. Otherwise zr2 defines the new class K2. The rest of the

recurring points are then tested, and each is either attached to an existing class Kj,

if the distance to its center is smaller than ε, or defines a new class. As one increases

ε from zero the number of classes decreases from n to one. If n is large enough, one

expects the number of classes to have a plateau at intermediate values of ε defining the

natural partitioning of the set of recurring points into classes. Each class determines

the neighborhood of either a fixed point of the map (3.6) or a point of a periodic

trajectory with period τ or less (the period should be a factor of τ , though).

Once a class K = Kj is found corresponding to a point of periodic trajectory with

period τ , one can use the same sequence of data points z0, z1, · · · , zN to simultaneously

determine the points z̄k of the target trajectory and the sequence of Jacobian matrices

Ãk. This is achieved using the least squares method to iteratively find the best fit for

the linear approximation

zk+1 = z̄k+1 + Ãk(zk − z̄k) (3.17)

for each k = 1, · · · , τ . The χ2 function should be constructed to incorporate the

information about the trajectories of length τ generated by each element of the class

K. For instance, one can take

χ2 =
∑
zri∈K

τ∑

k=1

ρ
(∣∣zri − z̄1

(p−1)

∣∣)
∣∣∣z̄k+1

(p) − zri+k + Ãk
(p)

(
zri+k−1 − z̄k

(p)

)∣∣∣
2

, (3.18)

where the subscript denotes the level of approximation. The 0th level approximation

z̄1
(0) is assumed to be given by the center of the class and the least squares procedure

is repeated until the estimates Ãk
(p) and z̄k

(p) converge. Nonuniform weights ρ(d) can
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be chosen to compensate for the lack of data points in the vicinity of the target

trajectory. Assigning a lower weight to trajectories which are farther from the target

trajectory reduces the error caused by the nonlinearity of the original map (3.6). For

instance, one can take ρ(d) = exp(−d2/a2), where a is an adjustable parameter of

order the radius ε of the class K.

The optimal embedding dimension nz is not known a priori, but can be determined

using the adaptive method similar to the one suggested by Petrov et al. [18]. The

idea is rather simple. One starts with the original sequence of points z0, z1, · · · , zN

and calculates the value of the χ2 function as described above. One then decreases

the embedding dimension by one, discarding the last component of all data points,

yielding a new sequence z0
1, z

1
1, · · · , zN

1 . Calculating the value of the χ2 function once

again and repeating the process until the dimension nz is exhausted or poor conver-

gence of the estimates Ãk
(p) and z̄k

(p) is observed, one obtains a series of values χ2(nz).

The optimal embedding dimension is then chosen as the minimal value of nz for which

the function χ2(nz) is close to its minimal value.

Finally, the control matrices B̃k
1 and B̃k

2 can be found by generating a new sequence

of points z0, z1, · · · , zN , but now with system parameters that are slightly perturbed,

and the perturbations recorded as a separate data sequence ∆u0,∆u1, · · · ,∆uN . One

then forms a new class of points K′ by taking z̄1 as the master point and either

rejecting or attaching the points zi to K′ based on whether the distance |zi − z̄1| is

larger or smaller than the radius ε (the same as the one used to construct the class

K). The least squares method is then used once again to find the best fit for the

linear approximation

zk+1 = z̄k+1 + Ãk(zk − z̄k) + B̃k
1∆uk + B̃k

2∆uk−1 (3.19)

for each k = 1, · · · , τ . The χ2 function is constructed similarly to the previous case,

with Ãk and z̄k fixed at their optimal values calculated previously,

χ2 =
∑

zi∈K′

τ∑

k=1

ρ
(∣∣zi − z̄1

∣∣) (3.20)

×
∣∣∣z̄k+1 − zi+k + Ãk

(
zi+k−1 − z̄k

)
+ B̃k

1∆ui+k−1 + B̃k
2∆ui+k−2

∣∣∣
2

.
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Minimizing χ2 with respect to B̃k
1 and B̃k

2 yields the sequence of control matrices and

gives us the last bit of information required to reconstruct the local dynamics of the

experimental system.

As pointed out by Petrov et al. [18], the control perturbations ∆uk may shift

the system away from the attracting manifold and thus excite additional degrees

of freedom effectively absent in the unperturbed dynamics on the attractor A. For

spatiotemporal systems most (but not all) of the normal modes will decay rapidly

compared to the time tk+1 − tk between successive crossings of the Poincaré section,

so that the corresponding degrees of freedom can still be ignored in the linearization

(3.14). The embedding dimension in this case should be increased to describe the

slowly decaying excited modes. The new value n′z can be adaptively found as in the

unperturbed case, with one modification. The function χ2 should be defined by (3.20)

with variable z̄k, Ãk, B̃k
1 and B̃k

2 instead of (3.18). Finally, the matrices Ak and Bk

and the target trajectory x̄k in the extended state-plus-parameter space are obtained

using (3.15) and (3.10).

Of course, this whole scenario is highly idealized, because in practice the measure-

ments are of finite duration and noisy, which can lead to excessive errors in the deter-

mination of both the dynamical equations and the periodic trajectories. We are not

going to discuss the techniques used to reduce the effects of noise in detail and instead

just give a few references. The two most popular methods are the Karhunen-Loève

decomposition [42; 43] and the wavelet transform [44]. The Karhunen-Loève decom-

position (also called singular system analysis, bi-orthogonal decomposition, etc.) is

based on choosing an appropriate basis of vectors to represent the time series. The

vectors are determined as a set of eigenvectors of the two-point correlation matrix

computed using the experimental data. The wavelet transform is a generalization of

the Fourier transform which represents the translation and the scaling of components

of a signal. Both methods are extremely useful and are used rather extensively to

reconstruct the dynamics of high-dimensional, and especially spatially extended, dy-

namical systems. The range of applications to the control problem is rather limited

so far (see, e.g., the work by Triandaf and Schwartz [45]), but is expected to grow

rapidly.
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Summarizing the results of this chapter, we conclude that even when no math-

ematical model for the system is available, the dynamical equations describing its

evolution can be extracted from the experimental data. Besides, the control problem

only requires the knowledge of the linearization of these equations about the selected

target state, which can be obtained even easier, and with better precision, than the

full nonlinear equations. We can, therefore, proceed with the analysis of the control

problem assuming that the dynamical equations are known.
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Chapter 4 Symmetric Systems

Despite the recent wave of interest towards controlling chaotic dynamics an interesting

and important question of controlling systems with symmetries received surprisingly

little attention in the physics literature. The importance of symmetries in controlling,

for instance, spatiotemporal chaos is evident, since the systems typically show rota-

tional and translational symmetries. Such phenomena as fluid flows, convection or

chemical reactions often take place inside symmetric containers — cylinders, spheres,

pipes and annuli. Even the dynamics of unbounded systems is often influenced by

the symmetries of the physical space. Although the presence of symmetries usually

significantly simplifies the analysis of the dynamics, it also makes system identifica-

tion and control more complicated due to the inherent degeneracies of the evolution

operators. In fact, the presence of symmetries, explicit or implicit, makes a number of

single-control-parameter methods fail [10; 17; 18], calling for multi-parameter control

[11; 14; 46; 47].

In order to see how the control problem is affected by symmetries, we consider (fol-

lowing the analysis conducted in [13]) a general discrete-time system (the arguments

for continuous-time systems are very similar), whose evolution is described by the

map (3.9). If the target trajectory x̄t of the system is unstable, it can be stabilized

by an appropriate feedback through the time-dependent control perturbation ∆ut,

provided the matrices At and Bt in the linearization (3.11) satisfy certain conditions.

In the present chapter we concentrate on selecting from the complete set of available

system parameters a minimal set of control parameters whose perturbation allows

the stabilization of the target state, i.e., making an appropriate choice of the control

matrix Bt, given the Jacobian At. The discussion of the problem of actually finding a

stabilizing feedback is deferred until chapter 5. We will see below that the constraints

affecting the choice of control parameters can be easily obtained from the symmetry

properties of the system and the controlled state. What is more interesting, symme-

try allows one to determine the minimal number of control parameters even when the
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Jacobian At describing the local dynamics is unknown.

As we have seen in the previous chapter, discrete-time evolution equations of type

(3.9) are often obtained as a result of phase space reconstruction of a continuous-time

system when the dynamical equations describing its evolution are unknown. Gener-

ically, such reconstruction is possible when the measurement of a single scalar time-

dependent signal y(t), which is a function of the system state s(t), is available. Many

practically interesting systems, symmetric ones in particular, are, however, extremely

nongeneric and require a number of independent scalar signals for the complete re-

construction. Eckmann and Ruelle [48] acknowledged that the choice of signals has

to be made carefully by trial and error. Certain general rules concerning this choice,

however, can be established on purely theoretical grounds, since this problem too can

be effectively treated based on the knowledge of underlying symmetries [49].

4.1 Time-Invariant States

4.1.1 Stabilizability and Controllability

Although our analysis is applicable to time-varying systems, we start for simplicity

by assuming that the controlled state is time-invariant, x̄t = x̄. Then the matrices

At and Bt become constant, and we can drop the time index in (3.11) to obtain

∆xt+1 = A∆xt +B∆ut. (4.1)

It is useful to introduce and compare two characterizations of the linearized evolution

equation (4.1), which extremely simplify the analysis of feedback control algorithms:

stabilizability and controllability.

The dynamical system (4.1) or the pair (A,B) is said to be stabilizable, if there

exists a state feedback

∆ut = −K∆xt, (4.2)

making the system (4.1) stable, i.e., it is possible to find a feedback gain matrix K,

such that all eigenvalues λ′k of the matrix A′ = A − BK lie within a unit circle

of the complex plane, |λ′k| < 1, ∀k. Otherwise the system or the pair (A,B) is
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called unstabilizable. Indeed, substituting the feedback (4.2) into (4.1) one obtains

the linearized evolution equation for the closed-loop system

∆xt+1 = (A−BK)∆xt, (4.3)

with ∆x = 0 becoming the stable fixed point of the map (4.3), if and only if A−BK
is stable.

Since the magnitude of the control perturbation ∆ut is proportional to the devia-

tion ∆xt of the system from the target state, feedback of the form (4.2) is often called

proportional in the physics literature, although there are a number of other terms used

to denote this type of feedback. Control theory uses the term state feedback to refer

to the fact that the state of the system is used to determine the control perturbation.

At first sight equation (4.2) seems to impose strict limitations on the allowed form

of the feedback law. However, this is precisely the form demanded by a number of

widely used control algorithms [10; 12; 17].

Stabilizability is a property, which usually sensitively depends on the values of

system parameters. In the majority of practical applications, however, it is prefer-

able to have an adaptive control that would stabilize a given steady state x̄(ū) for

arbitrary values of system parameters. This is especially important, if one is to track

the trajectory x̄ as parameters slowly vary, which might be advantageous in many

applications, e.g., for moving the operating point of a nonlinear device across a bi-

furcation, from the stable region to the chaotic region. Such a control scheme can

be obtained, if the more restrictive condition of controllability, which is essentially

parameter-independent, is imposed on the matrices A and B. On the other hand,

it can be demonstrated [50] that the controllability condition guarantees that the

eigenvalues of the matrix A−BK can be freely assigned (with complex ones in con-

jugate pairs) by an appropriate choice of the matrix K. Therefore, if the system is

controllable, it is stabilizable as well, and by requiring controllability we satisfy both

conditions at once.

The nx-dimensional linear system (4.1) or the pair (A,B) is said to be controllable

if, for any initial state ∆xti = ∆xi, times tf − ti ≥ nx, and final state ∆xf , there
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exists a sequence of control perturbations ∆uti , · · · ,∆utf−1 such that the solution

of equation (4.1) satisfies ∆xtf = ∆xf . Otherwise, the system or the pair (A,B) is

called uncontrollable.

The controllability condition can be represented in a number of different equivalent

forms. To obtain one particularly convenient form, we make the trivial observation

that, if it is possible to drive the linear system from an arbitrary initial state ∆xi to

an arbitrary final state ∆xf in nx steps, it is possible to do the same in any number

of steps n exceeding nx. Suppose we let the system evolve under control for nx steps

from the initial state ∆xt. The final state will be given by1

∆xt+nx = (A)nx∆xt +
nx∑

k=1

(A)nx−kB∆ut+k−1. (4.4)

Denote bm the mth column of the matrix B:

B = [b1 b2 · · · bnu ] . (4.5)

Regarding the terms (A)nx−kbm as vectors in the tangent space Rnx ,

hk
m = (A)nx−kbm, k = 1, · · · , nx, m = 1, · · · , nu, (4.6)

and the control perturbations ∆ut+k−1
m as coordinates, we immediately conclude that

equation (4.4) rewritten as

∆xf − (A)nx∆xi =
nx∑

k=1

nu∑
m=1

∆ut+k−1
m hk

m (4.7)

can only be satisfied, if and only if there are nx linearly independent vectors in the set

(4.6), i.e., the set {hk
m} spans the tangent space Rnx . This is equivalent to requiring

that

rank(C) = nx, (4.8)

where the matrix

C ≡ [B AB (A)2B · · · (A)nx−1B ] (4.9)

1Here and below in the text we use the notation (A)n to indicate that A is taken to the power of n to differentiate
it from the notation At, where index t defines the time dependence.
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is called the controllability matrix. Condition (4.8) was introduced into the physics

literature from linear systems theory by Romeiras et al. [17] as a simple, but practical

test of the controllability.

In contrast, the stabilizability condition requires that the set (4.6) spans only

the unstable subspace Lu ⊆ Rnx of the Jacobian A, instead of the whole tangent

space Rnx . Stabilizability can be formally expressed in the form identical to (4.8).

Let us define the number of stable and unstable2 eigenvalues of the Jacobian ns
x

and nu
x, respectively (one obviously has ns

x + nu
x = nx). For instance, if A is a

diagonalizable matrix, it has ns
x linearly independent stable eigenvectors which we

denote es
i , i = 1, · · · , ns

x. It can, therefore, be shown using an appropriate coordinate

transformation that the pair (A,B) is stabilizable if and only if

rank(S) = nx, (4.10)

where the matrix

S ≡ [ es
1 · · · es

ns
x

B AB · · · (A)nu
x−1B ] (4.11)

can be called the stabilizability matrix by analogy with the controllability matrix.

In order to better understand the restrictions imposed on the control scheme by

symmetries, it is beneficial to look at the controllability condition from the geometrical

point of view, assuming nu = 1 and, consequently, B = b. The controllability in

this context is equivalent to the vectors h1,h2, · · · ,hnx spanning the tangent space

Rnx . Generically, the matrix A is nondegenerate (has a nondegenerate spectrum),

so one can always find a vector b, such that the resulting set (4.6) forms a basis.

However, if A is degenerate, which is a usual consequence of symmetry, there will

exist an eigenspace of the Jacobian, Lr ⊂ Rnx , such that x†A = λrx
†, ∀x ∈ Lr with

the dimension dr = dim(Lr) > 1, where † denotes (complex conjugate) transpose

of a matrix or vector. The dynamics of the system in such an eigenspace cannot be

controlled with just one control parameter (see [17] for an example of such a situation),

because the vectors hk only span a one-dimensional subspace of Lr. Indeed, since

2For the purpose of control we regard the central directions, defined by the eigenvalues λ such that |λ| = 1
(Re(λ) = 0 in the continuous-time case), as unstable.
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dr > 1 there will exist dr − 1 adjoint eigenvectors fj ∈ Lr orthogonal to b and each

other. Then

(fj · hk) = f †j (A)nx−kb = λnx−k
r f †j b = λnx−k

r (fj · b) = 0, (4.12)

so every basis vector hk is orthogonal to every eigenvector fj, j = 1, · · · , dr − 1.

It is often convenient to define the notion of controllability for individual eigenvec-

tors. We will say that the adjoint eigenvector f of the Jacobian A is controllable, if

there exists m, 1 ≤ m ≤ nu, such that (f ·bm) 6= 0. Respectively, the eigenvector that

is orthogonal to every column of the control matrix B is called uncontrollable. Using

these definitions we can, therefore, conclude that the controllability of the linearized

system is equivalent to the controllability of each and every adjoint eigenvector of

the Jacobian matrix (also see [51]). Similarly, the stabilizability is equivalent to the

controllability of each and every unstable adjoint eigenvector.

If the system dynamics in Lr happens to be stable (e.g., when the system is

stabilizable, but uncontrollable), the system can still be stabilized similarly to the

nondegenerate case, but we have to ensure the controllability in case the dynamics in

this eigenspace is unstable. This can be achieved by increasing the number of control

parameters nu, which extends the set (4.6), until it spans every eigenspace of Rnx .

This would lead one to assume that the minimal value of nu should be defined by the

highest degeneracy of the Jacobian matrix A. We will see, however, that various kinds

of degeneracy have a somewhat different effect on the controllability of the system.

4.1.2 Symmetries of the System

Symmetries usually significantly simplify the analysis of system dynamics, and the

control problem is no exception. In particular, even when the exact form of the

Jacobian matrix is unknown, the structure of the symmetry group describing the

symmetries of the system allows one to reduce the controllability condition (4.8) to a

set of much simpler conditions, which provide a number of system-independent results.

The discussion below is based on bifurcation theory [31] and closely parallels the

treatment of degeneracy in quantum mechanics and spontaneous symmetry breaking
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in quantum field theory and phase transitions.

In general we call the system symmetric, if the nonlinear evolution equation pre-

serves its form under a set of linear transformations g : x → x′ = g(x) of the phase

space. More formally, we say that the evolution equation (3.9) possesses a structural

symmetry described by a symmetry group G, if the map F commutes with all group

actions:

F(g(x),u) = g(F(x,u)), ∀g ∈ G, ∀x ∈ Rnx (4.13)

or, in other words, if the function F(x,u) is G-equivariant with respect to its first

argument. The group G is usually a byproduct of symmetries of the underlying

physical space, such as rotational and translational symmetry (domain symmetry),

and symmetries of the phase space, such as phase symmetry φ → φ + 2π (range

symmetry). Since all interesting physical symmetries are unitary (such rare exceptions

as the Lorentz group are hardly relevant in the context of control problem), we will

assume that G is a unitary group.

Usually, the symmetry demonstrates itself in more than just one way: often steady

(as well as time-periodic) states x̄ of symmetric systems too will be symmetric with

respect to transformations g ∈ Hx̄, where Hx̄ ⊆ G is an isotropy subgroup of x̄.

In general, the target state x̄ might also be symmetric with respect to transforma-

tions which do not belong to G (we will see an example in section 4.3.1). However,

considering those does not provide any additional information, so we assume that

g(x̄) = x̄, ∀g ∈ Hx̄. (4.14)

For the purpose of control it is important to observe that upon linearization about

the target state x̄ the structural symmetry of the evolution equation (3.9) does not

disappear, but is replaced with a related dynamical symmetry. Indeed, using the

definitions (4.13), (4.14) and the fact that symmetry transformations are linear, one
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obtains in the linear approximation for an arbitrary g ∈ Hx̄:

x̄ + g(A∆x) = g(x̄) + g(A∆x) = g(x̄ + A∆x)

= g(F(x̄, ū) + A∆x) = g(F(x̄ + ∆x, ū))

= F(g(x̄ + ∆x), ū) = F(g(x̄) + g(∆x), ū)

= F(x̄ + g(∆x), ū) = F(x̄, ū) + Ag(∆x)

= x̄ + Ag(∆x). (4.15)

Defining L the full symmetry group of the linearized equation (4.1) in the absence

of control (∆ut = 0):

g(A∆x) = Ag(∆x), ∀g ∈ L, (4.16)

one concludes that the group L describing the dynamical symmetry of the system in

the vicinity of the target state x̄ includes all transformations g ∈ Hx̄, and therefore:

Hx̄ ⊆ L. (4.17)

One can speculate that typically L will coincide with Hx̄. As a consequence, if the

target state x̄ has low symmetry, the symmetry of the evolution equation will be

reduced upon linearization to a subgroup of G. However, as we will see in section

4.3.1, L might be equal to G, or even include G as a subgroup for highly symmetric

target states, with the apparent symmetry increased by linearization.

It turns out that with the help of group representation theory one can substantially

simplify the controllability condition (4.8) and, as a result, obtain a number of useful

restrictions on the set of control parameters. Consider the matrix representation

T generated in the tangent space Rnx by the action of transformations g from an

arbitrary subgroup L′ of the full dynamical symmetry group L:

(g(x))i = (T (g)x)i =
nx∑
j=1

Tij(g)xj, ∀x ∈ Rnx , (4.18)

where, according to (4.16), all matrices T (g) commute with the Jacobian

T (g)A = AT (g), ∀g ∈ L′ ⊆ L. (4.19)
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The knowledge of the representation T is enough to derive a very simple criterion

for the admissibility of the control matrix. Observe that, if T (g)B = B for an

arbitrary transformation g ∈ L′, then

C = [T (g)B AT (g)B · · · (A)nx−1T (g)B ]

= [T (g)B T (g)AB · · · T (g)(A)nx−1B ] = T (g)C. (4.20)

As a result, since Tij(g) 6= δi,j for any g 6= e (where we defined e as the identity

transformation: e(x) = x), the rows c̃j of the controllability matrix become linearly

dependent,
nx∑
j=1

(Tij(g)− δi,j)c̃j = 0, (4.21)

and the controllability condition (4.8) is violated. Therefore, we obtain a necessary

condition on the control matrix:

T (g)B 6= B, ∀g ∈ L′ \ {e}. (4.22)

In other words, the control arrangement should be chosen such that the symmetry of

the linearized evolution equation (4.1) is completely broken for (almost all) nonzero

control perturbations ∆u 6= 0.

4.1.3 Group Coordinates

Though simple and general, criterion (4.22) is not very helpful for finding the minimal

set of control parameters satisfying the controllability condition. In order to derive

a more practically useful criterion one has to make a few more steps. We begin with

the reduction of the controllability condition to a set of simpler conditions which can

be performed [50] be constructing the Jordan block decomposition of the Jacobian

matrix. The task of constructing this decomposition can be greatly simplified by

transforming to the “group coordinates,” defined with respect to the basis set com-

posed of vectors which transform according to different irreducible representations

contained in T , in which the Jacobian is block-diagonal. In practice, it is usually

impossible to determine whether the isotropy group Hx̄ exhausts the dynamical sym-
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metries of the system or the group L contains some hidden symmetries as well. It

is, therefore, important to show that a number of restrictions on the set of control

parameters can be obtained using an arbitrary unitary subgroup L′ of L.

Decomposing the representation T into a sum of irreducible representations T r of

the group L′ with respective dimensionalities dr, we obtain:

T = p1T
1 ⊕ p2T

2 ⊕ · · · ⊕ pqT
q (4.23)

with

nx = p1d1 + p2d2 + · · ·+ pqdq, (4.24)

where pr denotes the number of equivalent representations T r present in the decom-

position (4.23), and q is the total number of nonequivalent irreducible representations.

Since L′ is unitary, all irreducible representations T r in (4.23) can be chosen as unitary

[52].

The tangent space Rnx is similarly decomposed into a sum of invariant subspaces

Lrα
L′ such that T (g)x ∈ Lrα

L′ , ∀x ∈ Lrα
L′ and ∀g ∈ L′:

Rnx = L1
L′ ⊕ L2

L′ ⊕ · · · ⊕ Lq
L′ , (4.25)

where

Lr
L′ = Lr1

L′ ⊕ Lr2
L′ ⊕ · · · ⊕ Lrpr

L′ (4.26)

and α = 1, · · · , pr indexes different invariant subspaces, which correspond to the

same group of equivalent irreducible representations T r. It should be noted that even

though the decomposition (4.25) is unique, the decomposition (4.26) is not, unless

pr = 1. Let us introduce a basis in each invariant subspace Lrα
L′ and denote the basis

vectors erα
i , i = 1, · · · , dr. We choose the basis vectors such that they transform

according to the irreducible representation T r, i.e.,

T (g) erα
i =

dr∑
j=1

T r
ij(g) e

rα
j , ∀g ∈ L′. (4.27)

For unitary T r a generalized orthogonality condition between basis vectors erα
i can
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be established [52] as a consequence of (4.27):

(erβ
i · esα

j ) = δr,sδi,j(e
rβ
i · erα

i ). (4.28)

In addition, for pr > 1 the decomposition (4.26) can always be performed in such

a way that (erβ
i · erα

i ) = δα,β (this, however, still leaves some freedom in choosing

the invariant subspaces Lrα
L′ ), so that the complete set of basis vectors {erα

i }, where

r = 1, · · · , q, α = 1, · · · , pr, and i = 1, · · · , dr is made orthonormal. We, therefore,

conclude that the matrix P defined by

P =



P 1

...

P q


 , P r =



P r

1

...

P r
dr


 , P r

i =




(er1
i )†

...

(erpr

i )†


 , (4.29)

is orthogonal, (P )−1 = P † (or, more generally, unitary).

Furthermore, according to the Wigner-Eckart theorem [52], the matrix elements

of an arbitrary matrix (and the Jacobian A, in particular) invariant with respect to

any group transformation

T (g)AT−1(g) = A, ∀g ∈ L′, (4.30)

satisfy the following general formula:

(erβ
i · Aesα

j ) = δr,sδi,j(e
rβ
i · Aerα

i ), (4.31)

and the scalar product

(Λ̄r)αβ ≡ (erα
i · Aerβ

i ) (4.32)

is independent of the index i = 1, · · · , dr (but depends on the decomposition (4.26)).

As a result, on transformation to the group coordinates the Jacobian matrix becomes

block diagonal:

Ā = PAP−1 =



Ā1

. . .

Āq


 , (4.33)
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where each block Ār is itself block-diagonal

Ār =




Λ̄r

. . .

Λ̄r


 (4.34)

and consists of dr identical pr × pr blocks Λ̄r with the matrix elements defined by the

scalar product (4.32).

If no irreducible representation T r of L′ enters the decomposition (4.23) more than

once, i.e., p1 = · · · = pq = 1, the structure of the Jacobian matrix is completely re-

solved: the transformed Jacobian is diagonal and its spectrum consists of eigenvalues

λr = Λ̄r, r = 1, · · · , q with multiplicity dr, while the basis vectors erα
i become the cor-

responding eigenvectors (and, consequently, define the normal modes of the linearized

system). In this case the invariant subspaces of the group L′ define the eigenspaces of

the Jacobian, Lr = Lr
L′ . Clearly, the spectrum becomes degenerate, if the symmetry

is sufficiently high (such that T contains at least one irreducible representation T r

with dimensionality larger than one).

Degeneracy should not necessarily be associated with symmetry and might be

accidental (with respect to the group L′). For instance, it can happen that Λ̄r = Λ̄r′

for some r 6= r′, so that the multiplicity of the eigenvalue λr is increased respectively

to dr+dr′ . Accidental degeneracies can be alternatively thought of as a consequence of

hidden symmetries contained in the full symmetry group L of which L′ is a subgroup.

However, the degeneracies not associated with some physical symmetry are likely to

disappear under a typical perturbation, such as a change of system parameters and,

therefore, are most conveniently regarded as accidental. Since the full symmetry group

L, in general, depends on system parameters and cannot be directly deduced from

the structural symmetry group G, it is usually more convenient to use its parameter-

independent subgroup L′ = Hx̄ instead.

4.1.4 Jordan Decomposition

If the symmetry described by L′ is low, a number of equivalent irreducible represen-

tations will typically be found in the decomposition (4.23), i.e., we will have pr > 1
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for certain r. In this case the knowledge of the dynamical symmetries alone is not

sufficient to completely determine the structure of the Jacobian matrix, which is, in

general, system-dependent. As a result, one has to solve a secular equation

(Λ̄r − λrαI)e
r
α = 0, (4.35)

for each block Λ̄r with pr > 1 in order to find the eigenvectors in the invariant subspace

Lr
L′ and the respective eigenvalues. Here, unlike the case of quantum mechanics,

the Jacobian matrix does not have to be Hermitian and, therefore, might not be

diagonalizable. However, Λ̄r can always be reduced to the Jordan normal form by

finding the coordinate transformation Q̄r such that

Λr = Q̄rΛ̄r(Q̄r)−1 =




Λr1

. . .

Λrp′r


 , (4.36)

where p′r ≤ pr is the number of distinct eigenvalues and the Jordan superblock

Λrα =




Λrα
1

. . .

Λrα
jrα


 (4.37)

corresponding to the eigenvalue λrα consists of jrα Jordan blocks

Λrα
i =




λrα

1 λrα

. . . . . .

1 λrα



. (4.38)

In the absence of accidental degeneracy all eigenvalues of Λ̄r are different, so that

p′r = pr and jrα = 1 for all α, i.e., Λr is diagonal.

Since each block Ār of the transformed Jacobian (4.33) consists of dr identical

blocks Λ̄r, applying the coordinate transformation defined by the block-diagonal ma-
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trix assembled from dr blocks Q̄r,

Qr =



Q̄r

. . .

Q̄r


 , (4.39)

reduces Ār to the Jordan normal form:

Ãr = QrĀr(Qr)−1 =




Λr

. . .

Λr


 . (4.40)

The Jordan blocks on the diagonal of Ãr will not, in general, be arranged in su-

perblocks with the same eigenvalue. This, however, can be trivially corrected by

permuting the rows and columns of Ãr to obtain the matrix

Âr = RrÃr(Rr)−1 =



Âr1

. . .

Ârp′r


 , (4.41)

where Rr is the permutation matrix arranging the identical Jordan blocks next to

each other, and the Jordan superblock corresponding to the eigenvalue λrα has the

form

Ârα =



Ârα

1

. . .

Ârα
jrα


 . (4.42)

Each block Ârα
i is, in turn, composed of dr identical Jordan blocks Λrα

i , defined by

(4.38):

Ârα
i =




Λrα
i

. . .

Λrα
i


 . (4.43)

Defining the block-diagonal coordinate transformation matrices Q and R

Q =



Q1

. . .

Qq


 , R =



R1

. . .

Rq


 , (4.44)
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we eventually obtain the sequence of coordinate transformations reducing the Jaco-

bian matrix A to the Jordan normal form:

Â = (RQP )A(RQP )−1 =



Â1

. . .

Âq


 , (4.45)

where each block Âr, r = 1, · · · , q is defined by (4.41).

4.1.5 Conditions for Controllability

Once the Jacobian is reduced to the Jordan normal form, we can turn to the prob-

lem of reducing the controllability condition to a set of simpler conditions that will

give us the restrictions on the admissible set of control parameters. Since the con-

trollability is a property of the system which does not depend on the choice of the

coordinate system, condition (4.8) is invariant with respect to any (nonsingular) co-

ordinate transformation [50], and hence is satisfied for the pair (A,B), if and only

if it is satisfied for the pair (Â, B̂), where B̂ = (RQP )B is the transformed control

matrix. Let us partition the transformed control matrix B̂ according to the block

structure of Â:

B̂ =



B̂1

...

B̂q


 , B̂r =



B̂r1

...

B̂rp′r


 , B̂rα =



B̂rα

1

...

B̂rα
jrα


 , B̂rα

i =



B̂rα

i1

...

B̂rα
idr


 , (4.46)

and denote b̂rα
ij the first row of the matrix B̂rα

ij . Next, define the matrix B̄rα using

the relations

B̄rα =



B̄rα

1

...

B̄rα
jrα


 , B̄rα

i =




b̂rα
i1

...

b̂rα
idr


 . (4.47)

In the absence of accidental degeneracy between the eigenvalues that correspond

to different invariant subspaces Lr
L′ equation (4.42) ensures that there are exactly

drjrα Jordan blocks Λrα
i with the same eigenvalue λrα. If, however, there is such an

accidental degeneracy involving s different invariant subspaces Lr1

L′ , · · · , Lrs

L′ , such that
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for certain α1, · · · , αs

λr1α1 = · · · = λrsαs , (4.48)

the number of Jordan blocks corresponding to the eigenvalue λrα increases to

j′rα ≡
∑

r′,α′: λr′α′=λrα

dr′jr′α′ . (4.49)

The knowledge of the number of Jordan blocks is very important, since, accord-

ing to the standard result of linear system theory [50], it ultimately determines the

minimal number of control parameters. Specifically, it can be shown that the control-

lability condition for the pair of matrices (Â, B̂) is satisfied, if and only if for every r

and α (taken equal to r1 and α1 below)

rank



B̄r1α1

...

B̄rsαs


 = j′rα = dr1jr1α1 + · · ·+ drsjrsαs , (4.50)

where the indices ri and αi are chosen according to (4.48). This, in turn, can be

achieved, if and only if nu ≥ j′rα for every r and α. Hence, in the most general case

the minimal number n̄u of independent control parameters should equal the maximal

number of Jordan blocks with the same eigenvalue λrα:

n̄u = max
r=1,···,q

max
α=1,···,p′r

j′rα. (4.51)

Note that, since the block B̄rα has drjrα rows, rank(B̄rα) ≤ drjrα for every r and

α. Using this fact, the trivial matrix inequality

rank



B̄r1α1

...

B̄rsαs


 ≤ rank(B̄r1α1) + · · ·+ rank(B̄rsαs), (4.52)

and equation (4.50) one obtains

rank(B̄rα) = drjrα, r = 1, · · · , q, α = 1, · · · , pr. (4.53)

Furthermore, according to the definition (4.47) of the matrix B̄rα, for every r and α
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rank(B̂rα) ≥ rank(B̄rα), so one can write

rank(B̂r) = rank



B̂r1

...

B̂rpr


 ≥ max

α=1,···,pr

rank(B̂rα) ≥ dr max
α=1,···,pr

jrα. (4.54)

In addition, since Qr and Rr are nonsingular coordinate transformations which do

not change the rank of a matrix,

rank(B̂r) = rank(RrQrP rB) = rank(P rB), (4.55)

where we got rid of all system-specific information, which was contained in the ma-

trices Qr and Rr.

The symmetry information alone is insufficient to determine the values of either

jrα or j′rα. However, by definition one has pr ≥ jrα ≥ 1 so that j′rα ≥ dr. As

a consequence, we obtain two necessary conditions for controllability. First of all,

equation (4.51) yields the lower bound on the minimal number of control parameters

n̄u ≥ max
r=1,···,q

dr. (4.56)

Second, inequality (4.54) combined with equality (4.55) imposes a number of restric-

tion on the control matrix B,

rank(P rB) ≥ dr, r = 1, · · · , q, (4.57)

which can be interpreted as the requirement of the mutual independence of control

parameters. We can therefore, conclude that an arbitrary (unitary) subgroup L′ of

the full dynamical symmetry group L does not completely define the minimal set of

control parameters. It does, however, define a set of necessary conditions required for

controllability. In general, the knowledge of all dynamical symmetries, both unitary

and nonunitary, described by the group L is required in order to completely resolve

the structure of the Jacobian matrix and obtain the necessary and sufficient condition

for controllability.

Nevertheless, even without knowing the full symmetry group L one can obtain
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the necessary and sufficient conditions by making a number of assumptions. First,

assume that there are no accidental degeneracies (it is usually safe to do so if, e.g.,

L′ = Hx̄: we ensure that all physical symmetries are taken into account, and accidental

degeneracies should only appear for certain special values of system parameters).

Then jrα = 1, j′rα = dr, and B̄rα = B̂rα for all r and α, so condition (4.51) is

equivalent to

n̄u = max
r=1,···,q

dr. (4.58)

If, in addition, no irreducible representation T r of L′ enters the decomposition (4.23)

more than once, such that pr = 1 for all r, instead of inequality (4.57) one obtains

the equality:

rank(P rB) = dr, r = 1, · · · , q. (4.59)

Conditions (4.57) and (4.59) can be simplified even further by defining the pro-

jection operator P̂ r ≡ (P r)†P r onto the invariant subspace Lr
L′ ⊂ Rnx . This operator

can be obtained directly from the matrix representation T for most symmetry groups

of interest. For finite discrete groups it is given by

P̂ r =
dr

ng

∑

g∈L′
χr(g)T (g), (4.60)

where ng is the number of elements of the group L′ and χr(g) is the character of the

group element g in the representation T r. Similarly, for compact continuous groups

we have

P̂ r = dr

∫

L′
χr(g)T (g) dµ(g), (4.61)

where dµ(g) is the group measure [52]. Observing that rank((P r)†P rB) = rank(P rB),

we can use the projection operators to rewrite the condition (4.59) in an equivalent

form

rank(P̂ rB) = dr, r = 1, · · · , q. (4.62)

Summing up, we conclude that with the two assumptions made above the system

is controllable, if and only if the two conditions are met. The first one requires the

number nu of control parameters to be greater or equal to the dimensionality dr of
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the largest irreducible representation T r present in the decomposition of the matrix

representation T of the subgroup L′ ⊆ L in the tangent space Rnx . The second one

requires the control parameters to be independent: the columns bm of the control

matrix B have to be chosen such that dr of the projections P̂ rbm, m = 1, · · · , nu

are linearly independent (and, therefore, span the eigenspace Lr = Lr
L′) for every

r = 1, · · · , q. The last requirement imposes a number of restrictions on the admissible

form of the linear response of the system to perturbations of control parameters.

A number of comments are in order. First of all, as we have just seen, the number

of control parameters is determined by the number of Jordan blocks with the same

eigenvalue, not the multiplicity of that eigenvalue. It becomes intuitively clear why

this is so, if one compares the action of different Jacobians already reduced to the

Jordan form. For instance, the Jacobian

A1 =



λ

λ

λ


 (4.63)

generates the set of three linearly dependent vectors h0 = b, h1 = λb, h2 = λ2b

(compare to (4.6)), that span a one-dimensional subspace of R3 for an arbitrary choice

of b. As a result, three control parameters and a control matrix with three linearly

independent columns, B = [b1 b2 b3 ], are necessary to control the system. On

the contrary, the Jacobian

A2 =



λ

1 λ

1 λ


 (4.64)

generates a linearly independent set of basis vectors that spans R3, requiring just one

control parameter and a control matrix with a single column B = b.

Second, symmetry does not always make the Jacobian degenerate, and the non-

degenerate case can be handled in the same way as the one with no symmetries.

Neither does the degeneracy by itself imply that multi-parameter control is required:

even if the eigenvalue λr′α′ is degenerate, but j′rα = dr = 1 for every r and α (the

degeneracy is accidental and limited to a single invariant subspace Lr′
L′), one con-

trol parameter is sufficient to ensure the controllability. In both cases, however, the
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dynamical symmetry should be rather low. Specifically, the decomposition (4.23)

of the matrix representation T should not contain any multi-dimensional irreducible

representations.

Finally, the conditions on the set of control parameters that were obtained above

are imposed by the controllability condition and guarantee that control can be achieved.

However, in general, only the weaker stabilizability condition has to be satisfied which,

according to section 4.1.1, requires that every unstable normal mode of the system is

controllable, so that, only r and α such that |λrα| ≤ 1 have to be considered in the

conditions (4.50) and (4.51). As a consequence, it might be possible to stabilize highly

symmetric states of compact extended systems with strong spatial correlations using

a single control parameter — if only a small number of modes is excited, there is a

chance that all unstable modes will correspond to one-dimensional irreducible repre-

sentations T r. In strongly chaotic systems a large number of modes will be unstable

and many of them will inevitably be degenerate, calling for multi-parameter control.

Similar considerations apply to weakly chaotic systems with large spatial extent.

4.2 Time-Varying States

The results obtained above for the time-invariant case can be generalized for the time-

varying and, in particular, time-periodic case, but first we have to define the notions

of controllability and dynamical symmetry in the context of time-varying trajectories.

Indeed, in the time-varying case the Jacobian At and the control matrix Bt in the

linearized evolution equation (3.11) are time-dependent and, as a consequence, neither

the definition of controllability given in section 4.1.1 nor the condition (4.8) holds.

Besides, it is not at all clear that the symmetry of the target trajectory, and hence

the dynamical symmetry group L can be uniquely and consistently defined.

We will see that all these notions generalize in a rather straightforward way, so that

the same formalism as we used in the previous sections applies here as well. To begin

with, we define the controllability of a general time-varying linear system. Expanding

the definition given for time-invariant target states, we call the nx-dimensional linear

system (3.11) or the sequences of matrices {At, Bt} controllable if, for any initial
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state ∆xti = ∆xi, times tf − ti ≥ nx, and final state ∆xf , there exists a sequence

of control perturbations ∆uti , · · · ,∆utf−1 such that the solution of equation (3.11)

satisfies ∆xtf = ∆xf .

The controllability condition can be restated in terms of the matrices At and Bt

conducting the analysis similar to that of section 4.1.1. Applying the map (3.11) nx

times yields

∆xt+nx = J t+nx−1
nx

∆xt +
nx−1∑

k=0

J t+nx−1
nx−1−kB

t+k∆ut+k, (4.65)

where we have introduced a shorthand notation

J t
k = AtAt−1 · · ·At−k+1 (4.66)

for the product of k consecutive Jacobians. Arguments identical to those used to

derive the controllability condition (4.8) from equation (4.4) allow us to conclude

that for time-varying states the controllability condition can again be written in the

matrix form:

rank(Ct) = nx, ∀t, (4.67)

where the controllability matrix (4.9) is now replaced with the sequence of matrices

Ct ≡ [Bt J t
1B

t−1 J t
2B

t−2 · · · J t
nx−1B

t−nx+1 ] . (4.68)

Next we have to define the dynamic symmetry group L. Suppose the target tra-

jectory x̄1, x̄2, · · · , x̄τ has period τ , and the symmetry of the point x̄t on the target

trajectory is described by the group Hx̄t ⊆ G. We can then write

g(x̄t+1) = g(F(x̄t, ū)) = F(g(x̄t), ū) = F(x̄t, ū) = x̄t+1 (4.69)

for every g ∈ Hx̄t . Consequently,

Hx̄1 ⊆ Hx̄2 ⊆ · · · ⊆ Hx̄τ ⊆ Hx̄1 , (4.70)

which means that the symmetry properties of all the points on the target trajectory
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are the same and the isotropy symmetry group of the trajectory Hx̄ can be uniquely

defined using an arbitrary point x̄t, Hx̄ = Hx̄t .

Using the arguments that lead to equation (4.15) we obtain for an arbitrary g ∈ Hx̄:

x̄t+1 + g(At∆x) = g(x̄t+1) + g(At∆x) = g(x̄t+1 + At∆x)

= g(F(x̄t, ū) + At∆x) = g(F(x̄t + ∆x, ū))

= F(g(x̄t + ∆x), ū) = F(g(x̄t) + g(∆x), ū)

= F(x̄t + g(∆x), ū) = F(x̄t, ū) + Atg(∆x)

= x̄t+1 + Atg(∆x). (4.71)

This, in turn, means that the symmetry group Lt of the Jacobian At satisfies

Hx̄ ⊆ Lt, t = 1, · · · , τ. (4.72)

Again, typically, we expect Lt = Hx̄, so that L too would be unique for any given

periodic trajectory as would the matrix representation T , such that

T (g)At = AtT (g), ∀g ∈ L. (4.73)

It is, therefore, enough to know the symmetry properties of an arbitrary point of the

periodic trajectory in order to establish the requirements on the control scheme simi-

larly to the time-invariant case. If Lt is not unique, we can still use the commutation

relation (4.73) for the subgroup L′ = Hx̄ to obtain a lower bound on the minimal

number of control parameters.

Finally, we note that although it is possible to obtain certain results for time-

varying control matrices Bt, we assume, as is often the case in real systems, that Bt

is constant and drop the time index. As we will discover below, in the time-periodic

case the restrictions imposed by symmetry on the structure of the matrix B can

typically be determined without the detailed knowledge of the Jacobian matrices,

but based on the symmetry properties alone, similarly to the time-invariant case.

Indeed, let us construct the representation T of the group L′ in the tangent space

Rnx and decompose it into the sum of irreducible representations. This again defines

a set of invariant subspaces Lrα
L′ and a set of basis vectors {erα

i }, which we use to
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construct the coordinate transformation matrix P according to the definition (4.29).

Since the rank of the matrix (4.68) does not change under a coordinate transfor-

mation, the controllability condition (4.67) is equivalent to the condition

rank(C̄t) = nx, t = 1, · · · , τ (4.74)

where

C̄t = [ B̄ J̄ t
1B̄ · · · J̄ t

nx−1B̄ ] , (4.75)

B̄ = PB and J̄ t
k = PJ t

k(P )−1. The products J t
k have the same symmetry properties

as the Jacobian matrices At for arbitrary k and t, and, therefore, both the matrices

At and the products J t
k block-diagonalize in exactly the same way:

Āt = PAt(P )−1 =



Āt,1

. . .

Āt,q


 , (4.76)

and

J̄ t
k = PJ t

k(P )−1 =



J̄ t,1

k

. . .

J̄ t,q
k


 . (4.77)

Similarly to the time-invariant case, the blocks Āt,r and J̄ t,r
k are themselves block-

diagonal

Āt,r =




Λ̄t,r

. . .

Λ̄t,r


 , J̄ t,r =




Γ̄t,r
k

. . .

Γ̄t,r
k


 (4.78)

and consist of dr identical pr × pr blocks Λ̄t,r and Γ̄t,r
k , respectively, whose matrix

elements are defined by the scalar products

(Λ̄t,r)αβ ≡ (erα
i · Aterβ

i ),

(Γ̄t,r
k )αβ ≡ (erα

i · J t
ke

rβ
i ). (4.79)

Using the definition (4.66) one can check that for any t, k and r the matrix Γ̄t,r
k can
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be represented as the product

Γ̄t,r
k = Λ̄t,rΛ̄t−1,r · · · Λ̄t−k+1,r. (4.80)

Let us partition the transformed control matrix B̄ into blocks B̄r = P rB and

define the reduced controllability matrices

C̄r
t = [ B̄r J̄ t,r

1 B̄r · · · J̄ t,r
nx−1B̄

r ] . (4.81)

Using relation (4.24) and the fact that the matrix C̄r
t has drpr rows one can write

rank(C̄t) = rank



C̄1

t

...

C̄q
t


 ≤ rank(C̄1

t ) + · · · rank(C̄q
t ) ≤ d1p1 · · · dqpq = nx (4.82)

to obtain as a consequence of (4.74) the set of reduced controllability conditions

rank(C̄r
t ) = drpr, r = 1, · · · , q. (4.83)

The blocks J̄ t,r
k B̄r of the matrix (4.81) can become linearly dependent for certain

τ , dr and pr. Indeed, it is trivial to see that for a sequence of n arbitrary p × p

matrices Ri, it is always possible to find a set of coefficients µ0, µ1, · · · , µn such that

µ0I + µ1R1 + · · ·+ µnRn = 0, (4.84)

as long as n ≥ p2. Equally easy to establish is the fact that, if the matrices Ri are

not arbitrary, but satisfy the condition

Ri = W1W2 · · ·Wi, (4.85)

where Wi is a sequence of arbitrary p × p matrices, such that Wi+τ = Wi, equation

(4.84) can always be satisfied for n ≥ min(p2, pτ). The pr×pr matrices Γ̄t,r
1 , · · · , Γ̄t,r

nx−1

form precisely the sequence satisfying the condition (4.85). Besides, if the condition

(4.84) is satisfied for Ri = Γ̄t,r
i , it is satisfied for the sequence Ri = J̄ t,r

i as well. As a
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result,

rank(C̄r
t ) = rank [ B̄r J̄ t,r

1 B̄r · · · J̄ t,r
n−1B̄

r ] (4.86)

for n = min(p2
r, prτ) and arbitrary B̄r. Therefore, in order for the conditions (4.83),

and hence (4.67), to be satisfied, one should have

rank(P rB) ≥ ceil

(
max

(
dr

pr

,
dr

τ

))
, r = 1, · · · , q, (4.87)

where ceil(x) denotes the smallest integer number n such that n ≥ x. The necessary

conditions on the control matrix B, defined by (4.87) are the generalization of the

time-invariant result (4.57). Instead of (4.56) one respectively obtains the restriction

on the minimal number of independent control parameters required to satisfy the

controllability condition (4.67) for a periodic target trajectory:

n̄u ≥ ceil

(
max

r=1,···,q
max

(
dr

pr

,
dr

τ

))
. (4.88)

It is interesting to note that a periodic trajectory can be made controllable using the

number of control parameters nu that could be smaller than the number required for

a steady state with the same symmetry.

Three special cases deserve separate consideration. First of all, suppose that the

Jacobian matrices At commute with each other, so they can be simultaneously diag-

onalized. In this case the condition (4.84) can be satisfied by an appropriate choice

of coefficients µ1, · · · , µn for n ≥ pr, so the necessary conditions (4.88) and (4.87) will

reduce to (4.56) and (4.57), respectively, and n̄u will no longer depend on the period

τ of the target trajectory.

Next, suppose there are no accidental degeneracies between the eigenvalues of the

Jacobians At and their products J t
k, and no irreducible representation of L′ appears

in the decomposition (4.23) more than once (so that Jacobian matrices can again be

simultaneously diagonalized). Now, however, identically to the time-invariant case

one obtains the necessary and sufficient conditions (4.58) and (4.59) instead of the

necessary conditions (4.56) and (4.57).

Finally, although we used the fact that the trajectory is periodic to derive the

above results, this requirement could be lifted, provided the symmetry of all points
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on the target trajectory is the same, and, therefore, the condition (4.73) is satisfied.

A nonperiodic trajectory could then be treated as a periodic one, with period τ = ∞,

and the condition (4.84) will be satisfied by an appropriate choice of coefficients

µ1, · · · , µn for n ≥ p2
r. As a result, instead of the restriction (4.88) one will obtain

n̄u ≥ ceil

(
max

r=1,···,q
dr

pr

)
. (4.89)

4.3 Continuous-Time Systems

Most of the results obtained in the previous sections can be directly and naturally

generalized to continuous-time systems. This is a rather valuable asset of the devel-

oped theory, since continuous-time control is, in general, a much more flexible and

powerful technique than discrete-time control. In the presence of a decent continuous-

time mathematical model (3.2), continuous-time control can often achieve far superior

results. It is, however, a much more complicated technique as well. For simplicity

we only discuss the control of time-invariant target states. Linearizing the evolution

equation (3.2) around the steady target state s̄, one obtains

∆ṡ(t) = A∆s(t) + B∆u(t), (4.90)

where similarly to the discrete-time case we define the Jacobian

A = DsΦ(s̄, ū) (4.91)

and the control matrix

B = DuΦ(s̄, ū). (4.92)

The symmetries of the nonlinear evolution equation (3.2), the target state s̄, and

the linearization (4.90) are determined identically to the discrete-time case using the

relations (4.13), (4.14), and (4.16), yielding the symmetry groups G, Hs̄, and L,

respectively. The definitions of the notions of stabilizability and controllability in the

continuous-time case are completely analogous to the ones given in section 4.1.1 for

the discrete-time case.
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The dynamical system described by equation (4.90) or the pair (A,B) is said to

be controllable if, for any initial state ∆s(ti) = ∆si, times tf − ti > 0 and final state

∆sf , there exists a (piecewise continuous) control perturbation ∆u(t) such that the

solution of equation (4.90) satisfies ∆s(tf ) = ∆sf . Otherwise the system or the pair

(A,B) is called uncontrollable.

Similarly, the dynamical system or the pair (A,B) is said to be stabilizable, if

there exists a state feedback ∆u(t) = −K∆s(t) making the system stable, such that

all eigenvalues of the matrix A′ = A−BK have a negative real part, Re(λ′k) < 0, ∀k.
Otherwise the system or the pair (A,B) is called unstabilizable.

The controllability of the pair (A,B) again ensures that all eigenvalues of A′ can be

chosen appropriately, so that any controllable continuous-time system is stabilizable

as well. The controllability of a continuous-time system is also established using the

same criterion (4.8) used to test for the controllability in the discrete-time case. As a

result, the conditions imposed on the control matrix B by the controllability condition

in the presence of symmetry are exactly the same as those obtained for discrete-time

systems.

4.3.1 Particle in a Symmetric Potential

The motion of a particle in a symmetric potential, such as a point charge in electric

field, serves as an example of the relation between the groups G and L. This and

many other interesting physical systems, e.g., inverted pendulum, or a satellite in

orbit, are described by the second order ordinary differential equation

mr̈ = −∇V (r), (4.93)

which can be trivially reduced to a system of first order differential equations of

the form (3.2) introducing additional coordinate v = ṙ. Suppose the potential V (r)

possesses the cubic symmetry (described by the group O which is a subgroup of

SO(3)), but is not spherically symmetric, for instance:

V (r) = V0 cosh(kx) cosh(ky) cosh(kz). (4.94)
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The group G = O defines the structural symmetry of the evolution equation (4.93).

Linearizing it about the steady equilibrium point r̄ = 0 we obtain

∂t

[
r

v

]
=

[
0 I

ω2I 0

] [
r

v

]
, (4.95)

where ω2 = −V0k
2/m, while 0 and I are 3 × 3 zero and unit blocks, respectively. If

V0 < 0 the equilibrium is unstable, and control should be applied to keep the system

close to the equilibrium state.

Equation (4.95) is spherically symmetric, with L′ = SO(3) and, therefore, G ⊂ L,

i.e., the symmetry of the linearized equation is higher than the symmetry of the

original nonlinear evolution equation. (In fact, the full symmetry group of equation

(4.95) is L = GL(3), but we choose to use its subgroup L′ = SO(3), since it is

physically more relevant, completely resolves the structure of the Jacobian matrix

and, as such, correctly represents the effect of symmetry on the control setup.)

Next we notice that the representation T of the group L′ in the six-dimensional tan-

gent space {r,v} can be decomposed into a sum of two equivalent three-dimensional

irreducible representations of SO(3) (vector representations, which coincide with the

respective irreducible representation of GL(3)):

T = 2T 1, d1 = 3. (4.96)

This indicates that in order to control the unstable steady state r̄ = v̄ = 0 one needs

at least three independent control parameters, n̄u = 3.

Arguably the simplest way to control such a system is to re-adjust the potential

(applying external fields, shifting support point, etc.) based on the instantaneous

values of the position r and velocity v of the particle. This corresponds to picking

the control matrix in the following form:

B =

[
0 0 0

b1 b2 b3

]
, (4.97)

where b1, b2, b3 could be chosen as any three linearly independent vectors in R3.
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4.4 Symmetry Violation

In reality symmetries of physical systems displaying dynamical instabilities are almost

never exact. Indeed, the cylinders in a Taylor-Couette experiment are never perfectly

circular, the temperature inside a chemical reactor is never absolutely uniform, neither

are the rotor blades of a turbocompressor exactly identical. The above analysis, on

the other hand, has been conducted in the assumption of exact symmetry. Therefore,

it is essential to understand how the obtained results change, if the symmetry is not

exact or, in other words, what the effect of a weak symmetry violation is. Such an

analysis is also crucial in the vicinity of points in the parameter space where symmetry

increasing bifurcations or accidental degeneracies occur.

For simplicity let us again consider the time-invariant case. The Jacobian A of a

weakly perturbed symmetric system takes the form

A = A0 + εA1, (4.98)

where ε denotes the magnitude of the perturbation and the unperturbed Jacobian A0

is exactly symmetric with respect to all transformations g of the group L. For the

group representation T we thus have

T (g)A0 − A0T (g) = 0, ∀g ∈ L. (4.99)

In general, the perturbation εA1 will not be symmetric with respect to any element

of the group L, except the identity transformation e:

T (g)A1 − A1T (g) 6= 0, ∀g ∈ L \ {e}. (4.100)

Therefore, since

T (g)A− AT (g) = ε(T (g)A1 − A1T (g)), (4.101)

the perturbation (4.98) completely destroys the symmetry of the linearized evolu-

tion equation (4.1) for any ε 6= 0. As a result, the perturbed system can be made

controllable using a single control parameter, irrespectively of the properties of the

original symmetry group L. For instance, calculating the controllability matrix of the
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perturbed system with nu = 1 and B = b one obtains

C = C0 + εC1 + o(ε2), (4.102)

where we defined

C0 = [b A0b · · · (A0)
nx−1b ] ,

C1 = [ 0 A1b · · · ((A0)
nx−2A1 + · · ·+ A1(A0)

nx−2)b ] . (4.103)

C0 is clearly the controllability matrix of the unperturbed system with full symmetry,

which does not have a full rank, if the decomposition (4.23) contains at least one

irreducible representation T r with the dimensionality dr > 1. Indeed, in the absence

of accidental degeneracies that would mean

n0 ≡ rank(C0) ≤
q∑

r=1

pr < nx. (4.104)

The controllability matrix C of the perturbed system, on the other hand, has full

rank for any ε 6= 0 because the symmetry is completely destroyed by the perturba-

tion. Therefore, the perturbed linear system becomes controllable even though the

unperturbed system is not, for arbitrarily small perturbations.

The controllability ensures that for any initial and final states of the linear system

(4.1) the control can be found mapping the initial state to the final state in nx

iterations. Using (4.4) one obtains explicitly

∆Ut ≡




∆ut+nx−1

...

∆ut


 = (C)−1(∆xt+nx − (A)nx∆xt). (4.105)

Formally, if the system is controllable, the controllability matrix is invertible, and the

solution (4.105) is well defined for any ∆xt and ∆xt+nx . However, when the matrix

C is close to being singular its inverse is not well defined. It is convenient to use the

singular value decomposition of the controllability matrix

C = QΣR†, (4.106)
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where Q = [q1 q2 · · · qnx ] and R = [ r1 r2 · · · rnx ] are some orthogonal

nx × nx matrices, and

Σ =



σ1(ε)

. . .

σnx(ε)


 . (4.107)

The singular values are ordered such that σ1(ε) ≥ σ2(ε) ≥ · · · ≥ σnx(ε) for ∀ε.
Additionally, equation (4.104) requires

lim
ε→0

σi(ε) = 0, i = n0 + 1, · · · , nx. (4.108)

In terms of the matrices Q, Σ, and R we can write the inverse of C as

(C)−1 = R(Σ)−1Q† =
nx∑
i=1

σ−1
i (ε)riq

†
i (4.109)

and, therefore, for small ε equation (4.105) gives

∆Ut ≈
nx∑

i=n0+1

(qi ·∆xt+nx)− (qi · (A)nx∆xt)

σi(ε)
ri. (4.110)

As a consequence, we obtain

lim
ε→0

|∆Ut| = ∞. (4.111)

This relation means that at least one control perturbation of the feedback sequence

∆ut, · · · ,∆ut+nx−1 diverges as the symmetry breaking perturbation εA1 of the Jaco-

bian vanishes. Since no specific relation between the initial and the final state of

the system was implied, the obtained result is general, and does not depend on the

control method used to calculate the feedback.

In fact, a more general statement holds. Suppose the symmetry is violated only

partially, such that the perturbed Jacobian (4.98) remains exactly symmetric with

respect to a subgroup L′ of the full symmetry group L. Denote n̄u and n̄′u the minimal

number of control parameters required (assuming exact symmetry) by the groups L
and L′, respectively. Then it can be shown that, similarly to the single-parameter

case, at least one control perturbation of the feedback sequence ∆ut, · · · ,∆ut+nx−1

diverges as the symmetry breaking perturbation εA1 of the Jacobian vanishes when-
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ever n̄′u ≤ nu < n̄u. The same result is obtained if the independent with respect to

the group L′ control parameters become dependent with respect to the group L, as

indicated by the violation of the general independence condition (4.50). The time-

periodic generalization is also straightforward. We will call this situation parametric

deficiency.

In other words, although it might be possible to control a linear system with ap-

proximate symmetry using a number of control parameters which is smaller than that

required in the assumption of exact symmetry, the stabilization requires feedback of

very large magnitude. Such systems are called weakly controllable in the language of

control theory. However, the linear system is only an abstraction. The linear approxi-

mation (3.11) of the evolution equation (3.9) is only valid for small perturbations ∆ut

of the control parameters and small deviations ∆xt from the target trajectory. Be-

sides, additional restrictions on the magnitude of the feedback are usually imposed by

practical limitations, size and energy constraints, etc., at the implementation stage.

One can, therefore, conclude that, since the feedback scales linearly with the devia-

tion from the target trajectory, a nonlinear system with parametric deficiency can be

stabilized using linear control only in an asymptotically contracting neighborhood of

the target trajectory.

Finally, consider the vicinity of the point ū0 in the parameter space Rnu at which

an accidental degeneracy occurs, such that the dynamical symmetry is described by

the group L′ for ū 6= ū0 and is increased to L (of which L′ is a subgroup) for ū = ū0.

In this case L can be considered approximate symmetry in the vicinity of ū0, and

the distance to that point determines how strongly (or weakly) the symmetry L is

violated. Suppose the control scheme is such that there is a parametric deficiency.

Then the system will remain controllable for ū 6= ū0. However, the strength of

feedback required to control the system will diverge as ū approaches ū0, at which

point the system will become uncontrollable.
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4.5 System Identification

In the conclusion of this chapter we return to the problem of phase space reconstruc-

tion discussed in chapter 3. In the present section we concentrate on the Takens’ em-

bedding theorem [34] which justifies the validity of the delay coordinate embedding

technique. The theorem states that generically the embedding map P : s(t) → z(t)

generated by the vector (3.4) of sufficiently large dimensionality nz provides a global

one-to-one representation of the chaotic attractor. And while this genericity assump-

tion is satisfied for a typical system without symmetries, it is usually violated if

symmetries are present. In other words, most symmetric systems are nongeneric in

the sense of Takens. As a result of this nongenericity the state of the system becomes

impossible to reconstruct using a single scalar output, no matter how large the di-

mensionality nz of the embedding space is, locally in the vicinity of highly symmetric

periodic trajectories. The attractor of the system remains folded at certain points

and along certain curves in the phase space, which prevents the global reconstruc-

tion as well. Using the language of control theory we will say that such systems are

unobservable locally as well as globally.

The question of symmetry-caused nongenericity in the framework of phase space

reconstruction of a general symmetric system was first considered by King and Stewart

[49], who determined that the reason for the failure of the embedding theorem is the

violation of one of Takens’ generic assumptions that the flow defined by equation (3.2)

has simple eigenvalues for low-period periodic trajectories. As we have seen above,

symmetric systems typically (but not always) have degenerate eigenvalues (due to

the fact that most nontrivial irreducible representations are multi-dimensional) and,

as a consequence, are nongeneric. King and Stewart went on to formulate and prove

a generalization of the Takens’ embedding theorem, which required the output to be

a vector, not a scalar, function of the actual state of the system s(t):

y(t) = G(s(t)), (4.112)

mapping the phase space Q of the original system onto an ny-dimensional Euclidean
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space. The state of the system can then be represented by a delay coordinate vector

z(t) =




y(t+ T1)

y(t+ T2)
...

y(t+ Tne)



, (4.113)

where now the dimensionality of the embedding space is nz = nyne. The question we

have to answer is what conditions should the function G satisfy in order to allow a

local (or global) one-to-one embedding. Since the exact form of the evolution equa-

tions is rarely known, in order to find the answer one can only exploit the symmetry

properties of the system, which are often easy to establish based on the underlying

symmetries of the physical space. Fortunately, the symmetry provides most of the

necessary information.

Since we are interested in the issue of phase space reconstruction only as far as

it applies to the problem of linear control, we will assume a local character for the

observability property, unless explicitly stated otherwise. According to the analysis

conducted in [49], local embedding in the vicinity of the periodic trajectory s̄(t)

requires Rny to contain at least one copy of every invariant subspace Lrα
L′ generated

by the (unitary) irreducible representation T r of the respective isotropy symmetry

group L′ = Hs̄. This would lead one to assume that the minimal dimension ny of

the output signal should be determined by the dimension of the largest irreducible

representation T r.

This assumption can be trivially verified using the formalism developed above for

the control problem in the presence of symmetry. Indeed, let us again consider a

time-invariant target state s̄. Linearizing the output (4.112) in the vicinity of this

target state and denoting the displacement ∆y(t) = G(s(t))−G(s̄) one obtains:

∆y(t) = C∆s(t), (4.114)

where the constant matrix C is defined thus:

C = DsG(s̄). (4.115)
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The dynamical system defined by equations (4.90) and (4.114) or the pair (A,C) is

said to be observable if, for any times tf − ti > 0, the initial state ∆s(ti) = ∆si can be

determined from the measurement of control perturbation ∆u(t) and output ∆y(t)

in the interval t ∈ [ti, tf ]. Otherwise, the system or the pair (A,C) is said to be

unobservable.

It can be shown that the notion of observability is dual to the notion of controlla-

bility. The crucial benefit of this duality is the fact that the observability condition for

the pair (A,C) is equivalent [50] to the controllability condition for the pair (A†, C†).

Since the commutation relation (4.19) directly implies that

T (g)†A† = A†T (g)†, ∀g ∈ L′, (4.116)

the symmetry properties of the matrices A and A† are essentially identical (as are

the structures of their spectra, Jordan normal forms, etc.). As a result, all restriction

imposed on the control matrix B by the controllability condition in the presence of

symmetry should be satisfied for the matrix C† as well.

For instance, in case there are no accidental degeneracies and the representation T

contains at most one copy of each irreducible representation of the group L′, one can

claim that in order to reconstruct the dynamics in the vicinity of the time-invariant

symmetric target state s̄ the number ny of measured scalar output signals yi(t) should

be the same as the minimal number n̄u of independent control parameters, i.e., n̄y =

n̄u. Furthermore, the outputs have to be independent, so that dr of the projections

P̂ rci, i = 1, · · · , ny are linearly independent for every r, where P̂ r is the projection

operator defined by (4.60) and (4.61), and c†i is the ith row of the matrix C, which

imposes a number of restrictions on the allowed form of the function G. In addition,

similarly to the generic case, ne ≥ nh
s measurements of each output signal have to be

performed to construct a one-to-one representation (4.113) of the system state, which

increases the dimensionality of the embedding space to nz = n̄yn
h
s . Local observability

can be similarly defined for discrete-time systems (which is done in section 5.4.1).

Careful consideration shows that symmetry produces similar constraints independent

of the particular description.
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In addition to the notion of controllability of individual eigenvectors it is often also

convenient to define the notion of their observability. We will say that the eigenvector

e of the Jacobian A is observable, if there exists i, 1 ≤ i ≤ ny, such that (e · ci) 6= 0.

Respectively, an eigenvector that is orthogonal to every row of the matrix C is called

unobservable. Clearly, the observability of the linearized system is equivalent to the

observability of each and every eigenvector of the Jacobian matrix.

In the conclusion of this section we make a few comments regarding the problem

of global phase space reconstruction. Often it is important to know how the sym-

metry of the continuous-time experimental system transpires in the structure of the

discrete-time map (3.9) obtained as a result of the time delay embedding produced

by a general output signal (4.112). King and Stewart [49] recognized that it is as

important to preserve the symmetry of the attractor as it is to preserve its topology

during the reconstruction. According to (4.112), using an arbitrary vector output

y(t) to generate the delay coordinate representation of the system state corresponds

to picking a function G which, in general, distorts the symmetry. In order to preserve

the symmetry of the original attractor the function G has to be G-equivariant

G(g(s)) = g(G(s)), ∀g ∈ G, ∀s ∈ Q, (4.117)

where G is the structural symmetry group of the system (3.2) which will, in general,

act differently in the phase space Q and Euclidean space Rny . In addition, the

dimensionality ny of the Euclidean space has to be chosen high enough to avoid

local folding (obviously, ny should be no smaller than the number n̄y evaluated for

the steady or periodic trajectory with the highest isotropy symmetry). Finally, a

global one-to-one embedding can be achieved by choosing ne ≥ 2nh
s + 1 to preserve

the topology of the attractor. The map (3.9) constructed using this embedding will

preserve all dynamical symmetries of the original system. However, the structural

symmetry of the differential equation (3.2) and the map (3.9) will, in general, be

different.
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Chapter 5 Feedback Control

Once we have found the minimal number of control parameters n̄u and determined

that the linear response of the system to perturbation of these parameters, given

by the control matrix B, satisfies the requirements imposed by the controllability

condition, we can turn to the final part of the control problem, where our objective is

to find a feedback that would actually stabilize the target state. The controllability

condition determines whether such feedback exists, but it does not provide us with a

method to find it. As it turns out, the choice of feedback is not unique and depends

on the information available about the system and the assumptions made.

We restrict the scope of this chapter to discrete-time linear feedback control tech-

niques, which is explained primarily by the fact that the most convenient and precise

description of reconstructed chaotic dynamics in actual experimental systems is pro-

vided in terms of discrete-time mappings of the form (3.9) and their linearizations

(3.11). These mappings are deterministic, and as such describe idealized systems in

the absence of noise. In experiment a certain amount of noise is always present, so

real systems are more adequately described by a stochastic generalization of the map

(3.9):

xt+1 = F(xt,wt,ut), (5.1)

where wt is an nw-dimensional uncertainty vector representing the effect of noise.

Still, the majority of algorithms aimed at controlling chaotic dynamics assume that

the effect of noise is negligible, wt = 0, in the derivation of the feedback law. The

resulting closed-loop systems usually can tolerate a certain amount of noise without

being destabilized. However, one can take a more active approach and design the

feedback aimed at suppressing noise, rather than ignoring it, which yields far superior

results.

During the past fifty years or so control theory has generated a number of extremely

powerful and general linear feedback control techniques, some of which were later
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applied to the problem of chaos control and, occasionally, given new names. Nonlinear

dynamics, in addition, contributed quite a number of feedback control techniques

specialized to chaos control problems (see, for example, the review by Lindner and

Ditto [53]). Most of the techniques currently used to control chaos are rather simple

and intuitive, but the vast majority use single control parameter. Those that do

employ multi-parameter control [11; 46] required by symmetric systems are poorly

suited to deal with stochastic dynamical systems and cannot be easily generalized to

handle the output feedback control problem, which arises when complete information

about the state of the controlled system is not available.

Extended OGY control and dead-beat control, the two discrete-time techniques

predominantly used to control chaotic systems, use single control parameter, but

admit multi-parameter generalizations. Although derived with the assumption of

deterministic dynamics, these two techniques can be adapted for use in the stochas-

tic regime by making certain modifications necessary to reduce the effect of noise.

Nevertheless, they still cannot match the performance of optimal multi-parameter

control techniques, such as linear-quadratic (or H2) control and worst case (or H∞)

control, derived in the assumption of stochastic dynamics. Perhaps surprisingly, the

optimal control techniques produce better results in the deterministic case as well,

which makes them preferable for controlling extended chaotic systems.

5.1 OGY Approach

The original OGY method was developed by Ott, Grebogi and Yorke (hence the

name OGY) [54] for a very restricted class of problems. However, due to its easy

geometrical interpretation, the method attracted considerable attention of the physics

audience, and was subsequently developed [17; 10] into a powerful control technique.

This technique successfully overcame many of the limitations of the original method

to become the tool predominantly used by physicists to control systems displaying

chaotic behavior. A number of low-dimensional experimental systems, such as a

magnetoelastic ribbon [55], a parametrically driven pendulum [56], a diode resonator

[57], nonlinear lasers [58], and heart [4] and brain tissue [5] were successfully controlled
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Figure 5.1: OGY control of the unstable fixed point: the control perturbation ∆ut is chosen such
that the state vector xt is mapped onto the stable manifold Ws of the fixed point x̄.

using the OGY approach. Despite certain limitations, which we will discuss below,

this method is still in active use.

5.1.1 Original OGY Method

The idea of the method is to make the maximal use of the hyperbolic structure of

the map (3.9) in the vicinity of the fixed point x̄, which is to be stabilized. The key

idea is to adjust the control parameter u such that the state of the system is mapped

onto the stable manifold of the fixed point at time t0. In the absence of noise, this

is enough to guarantee that eventually the state of the system xt will approach the

fixed point

lim
t→∞

xt = x̄ (5.2)

even without further control, i.e., for ut = ū, t ≥ t0.

Consider a deterministic two-dimensional dynamical system, described by the map

(3.9) with a fixed point x̄, and suppose that the Jacobian A = DxF(x̄, ū) at this point

has one stable direction and one unstable direction defined by the eigenvectors es and

eu, respectively. These directions determine the local orientations of the stable and

unstable manifolds Ws and Wu (see figure 5.1). For such a system it is, in general,

possible to perturb the single available parameter ut in such a way that an arbitrary
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state xt of the system is mapped onto the stable manifold, xt+1 = F(xt, ū+∆ut) ∈ Ws,

at the next iteration. Since this condition cannot be resolved with respect to ∆ut

in the general nonlinear case, its linearization about x = x̄ and u = ū is used to

obtain an approximate solution. Substituting the vector b = B = ∂uF(x̄, ū) into the

linearized evolution equation (4.1), one obtains

αtes = ∆xt+1 = A∆xt + b∆ut, (5.3)

where αt is a constant to be determined. If we define the matrix

S = [ es b ] , (5.4)

which coincides with the stabilizability matrix (4.11) for the matrices A and B cor-

responding to the fixed point solution x̄, the linear equation (5.3) can be trivially

solved to yield [−αt

∆ut

]
= −(S)−1A∆xt, (5.5)

provided the matrix S is nonsingular, i.e., the vector b is not parallel to the stable

manifold Ws. This defines the linear feedback solution in the form (4.2):

∆ut = −K∆xt, (5.6)

which stabilizes the fixed point x̄ of the map (3.9). According to (5.5), the feedback

gain matrix is given by

K = [ 0 1 ] (S)−1A. (5.7)

If, however, the vector b is parallel to the stable manifold, b = βes, it becomes an

eigenvector of the Jacobian A. As a consequence, the corresponding controllability

matrix becomes rank-deficient,

rank(C) = rank [b λsb ] = 1 < nx = 2, (5.8)

and both the stabilizability and the controllability condition are violated. We thus

conclude that as long as the two-dimensional hyperbolic system is stabilizable, it
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can be controlled by perturbing the single available parameter using linear feedback,

calculated according to the OGY method.

Nonlinearities and noise, which are always present in real experimental systems

described by the map (5.1) rather than (3.9) continuously drive the trajectory away

from the linear approximation of the stable manifold. As a consequence, setting

∆ut = 0 for all times t after we first managed to bring the system to the stable

manifold, will not achieve the desired stabilization of the fixed point. We, therefore,

have to apply feedback defined by (5.6) and (5.7) repeatedly at every iteration in an

attempt to correct for the destabilizing effect of the nonlinearities and noise. Note

that, according to (5.6), the feedback ∆ut vanishes when the system approaches the

fixed point. Respectively, the magnitude of perturbations required to maintain control

in the stochastic case decreases with decreasing noise, but never goes to zero as long

as nonzero noise is present.

5.1.2 Time-Periodic States

Romeiras et al. [17] noted that the original OGY method, which was outlined in

the previous section, can be easily generalized to deal with time-periodic states and

systems with higher dimensionality and, most important, with an arbitrary number

of unstable directions, nu
x ≥ 1. Indeed, the time-varying nature of the target state

is not an obstacle, since any period-τ trajectory x̄1, x̄2, · · · , x̄τ of the map (3.9) can

be thought of as a collection of fixed points of the superposition Fτ of τ maps F.

Furthermore, an arbitrary point of the stable manifold, independent of the manifold’s

dimensionality, is attracted to the fixed point. As a result, the idea of the method

can be preserved completely: the perturbations ∆ut should be applied in such a way

as to eventually bring the state of the system onto the stable manifold.

As far as the calculation of the feedback is concerned, however, a number of tech-

nical comments has to be made. First of all, since the target state x̄t is not time-

invariant anymore, all the matrices in the linearization (3.11) become time-dependent,

and we have to restore the time index, bearing in mind that the matrices are periodic

in this index with period τ , e.g., At+τ = At. Second, the eigenvectors of instantaneous

Jacobians At no longer define the stable and unstable manifolds. Instead, we use the
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stable and unstable manifolds of the fixed points x̄t of the superposition of maps Fτ ,

whose local orientation in the time-periodic case is determined by the eigenvectors of

the matrices J t+τ−1
τ defined by (4.66). Since the products J t

τ and J t′
τ only differ by a

cyclic permutation for t 6= t′, their spectra are the same. The eigenvectors, however,

change with time. As a consequence, the orientations of the manifolds become time-

dependent, although the dimensions of both the stable and the unstable manifold,

which we denoted respectively ns
x and nu

x, remain constant and satisfy the relation

nu
x + ns

x = nx (we assume there is no accidental degeneracy between eigenvalues of

matrices J t
τ ).

Third, if nu
x > 1, it becomes impossible to map an arbitrary state vector xt onto the

stable manifold applying a single control perturbation. It can be easily seen that nu
x

consecutive control perturbations are required. Indeed, the control matrices defined

by (3.13) become vectors in the single-parameter case, Bt = bt, and starting at time

t one would have at time t+ n:

∆xt+n = J t+n−1
n ∆xt +

n−1∑

k=0

J t+n−1
n−1−kb

t+k∆ut+k. (5.9)

The algorithm requires that xt+n lies on the stable manifold Ws of the point x̄t+n,

which in the linear approximation can be written as

∆xt+n = αt+n
1 et+n

1 + · · ·+ αt+n
ns

x
et+n

ns
x
, (5.10)

where et
k denote the ns

x linearly independent stable eigenvectors of the matrix J t+τ−1
τ ,

and αt
1, · · · , αt

ns
x

are the constants to be determined. Equation (5.9) uniquely defines

the perturbation of the control parameter for the time steps t through t+ n− 1 only

for n+ ns
x = nx and, therefore, we should set n = nu

x.

If we define a sequence of matrices

St = [ et+1
1 · · · et+1

ns
x

bt · · · J t
nu

x−1b
t−nu

x+1 ] , (5.11)

the solution for control perturbations ∆ut through ∆ut+nu
x−1 can be obtained in the
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form similar to (5.5):




−αt+nu
x

1

...

−αt+nu
ns

x

∆ut+nu
x−1

...

∆ut




= −(St+nu
x−1)

−1J
t+nu

x−1
nu

x
∆xt, (5.12)

again provided the matrices St are nonsingular or, equivalently,

rank(St) = nx, t = 1, · · · , τ. (5.13)

The sequence (5.11) is nothing more than a time-dependent generalization of the

stabilizability matrix (4.11), while the condition (5.13) replaces the stabilizability

condition (4.10) for periodic target trajectories.

Similarly to the previous section, in case of real experimental systems described

by equation (5.1) we choose to apply the feedback at every step to correct for the

deviations from the stable manifold caused by nonlinearity and noise. Indeed, starting

at time t from the state xt and applying the sequence of control perturbations ∆ut

through ∆ut+nu
x−1 calculated using (5.12), we arrive at another state xt+nu

x , which

generally will not lie exactly on the stable manifold. Therefore, we will have to repeat

the procedure by applying another sequence of nu
x control perturbations calculated

based on the state xt+nu
x and so on.

However, if there are many unstable directions (which is usually the case in spa-

tiotemporally chaotic extended systems), the sequence of precalculated control per-

turbations becomes very long and the above procedure does not allow the control

algorithm to react to noise promptly enough. One of the possible solutions is to cal-

culate only the first step ∆ut of the control sequence and then reset the algorithm.

We then repeat the process, evaluating ∆ut+1 based on the new state xt+1 using the

formula (5.12) with t → t + 1, etc. Doing so again results in linear proportional

feedback

∆ut = −Kt∆xt, (5.14)
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but now the gain matrix becomes time-dependent

Kt = [ 0 · · · 0 1 ](St+nu
x−1)

−1J
t+nu

x−1
nu

x
. (5.15)

In the absence of noise and nonlinearities (5.12) and (5.14) give the same feedback.

For real experimental systems the latter approach is preferable, because usually it

can tolerate higher levels of noise and stronger nonlinearities.

5.1.3 Multi-Parameter Control

In the conventional single-control-parameter form the OGY technique is not applica-

ble to most chaotic systems with nontrivial symmetries, which require a larger number

of control parameters, nu > 1. However, this approach is flexible enough to allow a

multi-parameter generalization. Below we propose a simple way to achieve such a

generalization using a number of straightforward modifications of the algorithm de-

scribed in the previous section. First of all, we note that increasing the number of

control parameters allows a greater degree of control, so the target condition (5.10)

can be reached in a number of steps fewer than the number nu
x of unstable directions.

In the multi-parameter case the control matrix Bt consists of a number of columns

equal to the number of control parameters. Using the notation (4.5) for the columns

of Bt, we obtain instead of equation (5.9):

∆xt+n = J t+n−1
n ∆xt +

n−1∑

k=0

J t+n−1
n−1−kB

t+k∆ut+k

= J t+n−1
n ∆xt +

n−1∑

k=0

nu∑
m=1

J t+n−1
n−1−kb

t+k
m ∆ut+k

m , (5.16)

which together with condition (5.10) forms a system of nx linear equations in nun+ns
x

unknowns. Therefore, in general, a sequence of nt control perturbations, where

nt ≥ nu
x

nu

(5.17)

is required to satisfy the target condition (5.10).

For a typical high-dimensional system we expect nu ¿ nu
x ¿ ns

x. If nu
x is a
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multiple of nu, then we can take n = nt = nu
x/nu and proceed similarly to the

single-parameter case. If nu
x is not a multiple of nu, on the other hand, the system

becomes underdetermined and additional conditions have to be imposed to obtain a

unique solution. Let us define nt as the smallest integer satisfying relation (5.17), i.e.,

nt = ceil(nu
x/nu). The ntnu − nu

x missing conditions can be supplied in a number of

ways. For instance, one can impose additional conditions by requesting that after nt

iterations the state of the system is mapped onto the subset of the stable manifold

defined by the nx − ntnu stable eigenvectors with smallest respective eigenvalues.

Assuming the stable eigenvalues are labelled in the order of increasing magnitude,

|λs
1| ≤ |λs

2| ≤ · · · ≤ |λs
ns

x
|, these additional conditions can be written as

αt+nt
i = 0, i = nx − ntnu + 1, · · · , ns

x. (5.18)

Condition (5.18) effectively collapses the state along the most dangerous directions

inside the stable manifold, which become especially susceptible to noise when the

magnitude of the respective eigenvalues becomes close to one. There are other ways

to choose ntnu − nu
x additional conditions, e.g., by projecting ∆xt+nt orthogonally

to the intersection manifold defined by equation (5.10), as suggested by Warncke et

al. [11]. However, the advantages of the latter choice are unclear, while the implicit

assumption that nu > nu
x is hardly ever satisfied in an experimental setting.

Conditions (5.10) and (5.18) determine both the projection on the stable manifold

Ws and the control perturbations ∆ut through ∆ut+nt−1 based on the knowledge of

the state of the system at time t:




−αt+nt
1

...

−αt+nt
nx−ntnu

∆ut+nt−1

...

∆ut




= −(S̃t+nt−1)
−1J t+nt−1

nt
∆xt, (5.19)
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where the matrices S̃t are given by

S̃t = [ et+1
1 · · · et+1

nx−ntnu
Bt · · · J t

nt−1B
t−nt+1 ] . (5.20)

Finally, using the first control perturbation of the sequence determined by (5.19)

similarly to the single-parameter case we obtain the linear proportional feedback

∆ut = −Kt∆xt (5.21)

with the time-periodic gain

Kt = [ 0nu×nx−nu Inu×nu ](S̃t+nt−1)
−1J t+nt−1

nt
. (5.22)

In order for the solution (5.19) to be defined, the matrices S̃t should be nonsin-

gular for every t = 1, · · · , τ . This requires the satisfaction of the time-dependent

generalization of the stabilizability condition (5.13) for the sequence of stabilizability

matrices

St = [ et+1
1 · · · et+1

ns
x

Bt · · · J t
nu

x−1B
t−nu

x+1 ] . (5.23)

Indeed, one can easily check that, since the matrix S̃t can be obtained from the matrix

St by removing a number of columns, rank(S̃t) ≤ rank(St). However, stabilizability is

only a necessary, not sufficient, condition and, therefore, not all stabilizable systems

can be controlled using the multi-parameter generalization of the OGY technique. In

the single-parameter case S̃t = St and stabilizability becomes the sufficient condition

as well.

5.2 Dead-Beat Control

Equally compelling from the geometrical point of view, the dead-beat control tech-

nique discussed in the framework of chaos control by a number of authors [12; 18; 46]

in fact has several advantages over the conventional OGY approach, although it im-

poses slightly more stringent conditions on the system. Instead of controlling the

system indirectly by steering it towards the stable manifold, one can try to steer the
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system directly towards the target trajectory x̄t. From the mathematical point of

view, this is equivalent to replacing the target condition (5.10) with

∆xt+n = 0. (5.24)

Keeping in mind that symmetric systems require several control parameters, we as-

sume from the outset that nu > 1. A multi-parameter version of the dead-beat control

has been, in fact, discussed in the chaos control literature [46]. However, the proposed

algorithm, obtained as a special case of the pole placement technique, is unnecessar-

ily complicated and completely lacks the intuitive connection with the geometrical

interpretation suggested above.

Instead we propose a different and more illustrative approach. Similarly to the

OGY algorithm, substituting (5.24) into (5.16) yields a system of nx linear equations

in nnu unknowns. The target condition (5.24) can be reached in a number of iterations

n ≥ nt, where

nt = ceil(nx/nu). (5.25)

Let us take n = nt. In order to obtain a unique solution for the perturbation ∆ut, if

nx is not a multiple of nu, one has to specify ntnu−nx additional conditions. Since the

perturbation vectors ∆ut through ∆ut+nt−1 are the only unknowns in the problem,

the additional conditions have to be imposed on their components. For instance, this

can be achieved by requiring that the system is mapped onto the target trajectory

without perturbing the last ntnu−nx components of the parameter vector on the last

step of the control sequence. Introducing the shorthand notation nc = nx−(nt−1)nu

this can be written as

∆ut+nt−1
m = 0, m = nc + 1, · · · , nu. (5.26)

The solution for the sequence of control perturbations ∆ut, · · · ,∆ut+nt−1 driving

the system from an arbitrary state xt directly to the point x̄t+nt of the the target
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trajectory is then defined by (5.26) and the equation




∆ut+nt−1
1

...

∆ut+nt−1
nc

∆ut+nt−2

...

∆ut




= −(C̃t+nt−1)
−1J t+nt−1

nt
∆xt, (5.27)

where the matrices C̃t are given by

C̃t = [bt
1 · · · bt

nc
J t

1B
t−1 · · · J t

nt−1B
t−nt+1 ] . (5.28)

Again, discarding all but the first control perturbations of the sequence determined

by (5.27) we obtain the linear proportional feedback (5.21) with the time-periodic

gain

Kt = [ 0nu×nx−nu Inu×nu ](C̃t+nt−1)
−1J t+nt−1

nt
. (5.29)

As expected, in the single-parameter time-invariant case equation (5.29) coincides

with the respective pole placement result. Indeed, we have nu = 1, so that nt = nx and

C̃t = C, where C is the controllability matrix defined by (4.9). Setting all eigenvalues

in Ackermann’s formula [46]

K = [ 0 · · · 0 1 ](C)−1(A− λ′1I) · · · (A− λ′nx
I) (5.30)

to zero, λ′1 = · · · = λ′nx
= 0, one obtains the same feedback gain matrix K as the one

given by (5.29). The Jacobian A′ = A − BK of the respective closed-loop system is

not only stable, but nilpotent, (A′)nt = 0. Closed-loop systems of this type are called

dead-beat in control theory.

The solution (5.27) is defined only when the matrices C̃t are nonsingular, which is

equivalent to

rank(C̃t) = nx, t = 1, · · · , τ. (5.31)

Furthermore, the matrix C̃t can be obtained from the controllability matrix Ct by
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removing a number of columns, so rank(C̃t) ≤ rank(Ct) and, therefore, in the multi-

parameter case the controllability of the system is required for, but does not guaran-

tee, the existence of the solution (5.27). In the single-parameter case controllability

becomes the sufficient condition as well.

Comparing the extended OGY approach with the dead-beat control method we

see more similarities than differences, including the fact that the OGY approach

reduces to dead-beat control when there is no stable manifold. However, there are

a number of distinctions, which could make one method preferable to the other in

certain conditions. Dead-beat control is simpler: it does not require the knowledge

of the eigenvalues and eigenvectors of the Jacobians and their products, evaluation

of which could be a rather complicated and numerically costly procedure, especially

for high-dimensional systems. The OGY method performs poorly when there are

stable eigenvalues with magnitude close to one. Since the largest stable eigenvalue

determines the rate at which the state approaches the target trajectory, such a system

will typically be very sensitive to noise. An illustration of this effect is presented in

figure 6.4, where the sensitivity of different control techniques to noise is compared for

a sample high-dimensional system. The peaks in the noise amplification produced by

the OGY-type feedback correspond to the values of parameter ε at which eigenvalues

of the Jacobian cross the unit circle |λ| = 1. The same figure, though, shows that

the OGY control performs better than the dead-beat control for most other values of

parameter, especially for small ε, where the sample system has an intrinsic degeneracy.

5.3 Linear-Quadratic Control

Next, we turn to the linear-quadratic control technique which has become one of the

cornerstones of modern optimal control theory [59]. Surprisingly, this method never

found its way into chaos control theory, despite its many advantages. The idea and

methodology of linear-quadratic control is rooted in the theory of stochastic processes

familiar to physicists and mathematicians alike. Unlike the OGY approach and the

dead-beat control technique, linear-quadratic control alone provides a framework for

the systematic and consistent treatment of both the steady and time-periodic control
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problem with or without noise, using full or partial information about the system

state. Another significant benefit of this technique is the possibility to tune the

feedback to obtain the best performance for a specific system.

5.3.1 Time-Invariant States

In the preceding sections we did not make a distinction between the deviations from

the linearized dynamics described by equation (3.11) caused by nonlinearities and

external noise. The noise in an experimental system can be reduced; however, the

nonlinearities are intrinsic and always have to be considered when the validity of linear

feedback control is considered. For simplicity let us assume that the target state x̄

is time-invariant and that the noise is absent. Any stabilizing linear feedback of the

form (4.2) will eventually (and usually rather rapidly) bring the system arbitrarily

close to the target state x̄, provided the system is in the neighborhood N (x̄) of the

target state when the control is turned on. The neighborhood N (x̄) can be defined

as the basin of attraction of the steady state x̄ of the nonlinear closed-loop system

xt+1 = F(xt, ū−K[xt − x̄]). (5.32)

The major difference between linear control algorithms in the deterministic case is,

therefore, in the size and shape of this basin of attraction.

We assume that the dynamics of the system is chaotic, i.e., the system evolves on

a chaotic attractor A, and the evolution is ergodic, so that the system visits every

neighborhood of any steady or periodic state embedded in the attractor as time goes

on. Therefore, a natural (and often the only possible) way to enforce linear control for

the target state x̄ ∈ Ā is to wait, with the control turned off, until the systems gets

in the neighborhood N (x̄) of the target state and then turn the control on. However,

it is difficult to check if the condition x ∈ N (x̄) is satisfied, since the shape of the

basin of attraction is usually very irregular.

In practice one instead checks for x ∈ P(x̄), where P(x̄) ⊂ N (x̄) is a regularly

shaped neighborhood of x̄, which best approximates N (x̄). The linear size δx of P(x̄)

is extremely important, especially for high-dimensional systems like the ones we study
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here, because it determines the probability for the system to visit this neighborhood,

which scales as (δx)np
x , where np

x is the local pointwise dimension of the attractor, and

thus defines the average time tc ∝ (δx)−np
x one has to wait to turn the control on (also

called the capture time). Therefore, both the size and the shape of the neighborhood

N (x̄) are important, if the linear control algorithm is to be practically effective.

The size of N (x̄) crucially depends on the assumptions made during the derivation

of the linear control law. In particular, the linear approximation (4.1) is valid only

when both the deviation ∆xt from the target state and the perturbation ∆ut of the

control parameters are sufficiently small, so that the combined state-plus-parameter

vector belongs to a neighborhood M(x̄, ū) ⊂ Rnx × Rnu of the point (x̄, ū) inside of

which nonlinear corrections are negligible. Choosing the feedback gain K produces

the constraint (4.2) projecting the set M(x̄, ū) onto the tangent space Rnx , which

yields a first-order approximation

N (1)(x̄) = {∀x | (x, ū−K [x− x̄]) ∈M(x̄, ū)} (5.33)

of the basin of attraction N (x̄) (one has to ensure that equation (4.1) is valid for all

consecutive steps as well, i.e., x̄ + (A − BK)t(x − x̄) ∈ N (1)(x̄), t = 1, 2, · · ·). As a

result, the feedback gainK usually has to be chosen such that the control perturbation

∆ut is minimized in order to maximize the size of N (1)(x̄). Such feedback can be

found as an optimal solution which minimizes the functional

V (∆x0) =
∞∑

t=0

[
Hs(∆xt) +Hc(∆ut)

]
, (5.34)

with the constraint (4.1) for every initial deviation ∆x0. We introduced the following

notations here:

Hs(∆x) = ∆x†Q∆x,

Hc(∆u) = ∆u†R∆u, (5.35)

where Q and R are the feedback parameters, which could be chosen as arbitrary pos-

itive semidefinite symmetric matrices in order to tune the control scheme by “weight-
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ing” different components of the state and control vectors.

Although the dynamics of the system is, in general, non-Hamiltonian, it is in-

teresting to note the following analogy with mechanical description of Hamiltonian

systems: Hs(∆x) and Hc(∆u) can be interpreted as the Hamiltonian function of the

linearized system and the energy of its interaction with the controller, so that the

functional V (∆x) represents the discrete-time action.

Using variational calculus it can be shown [59] that the minimal value of the

action (5.34) is reached for ∆ut = −K∆xt and is quadratic in the initial deviation,

V (∆x) = ∆x†P∆x, where P is a solution of the discrete-time algebraic Riccati

equation

P = Q+ A†PA− A†PB(R +B†PB)−1B†PA, (5.36)

which essentially is the discrete-time version of the respective Hamilton-Jacobi equa-

tion, and the feedback gain K is given by:

K = (R +B†PB)−1B†PA. (5.37)

It can be also shown [59] that, if R is positive definite, Q = D†D and the pairs

(A,B) and (A†, D†) are controllable, there exists a unique positive definite solution

P to equation (5.36), and the closed-loop system (4.3) with feedback gain (5.37) is

stable. Formally, the derivation of the Riccati equation is only valid for R 6= 0.

However, since the limit

P = lim
R→0

P (R) (5.38)

is usually well defined, the Riccati equation can be used to find the optimal feedback

for R = 0 as well. Although it is generally impossible to find the solution of the

Riccati equation analytically, extensive software exists for solving nonlinear matrix

equations of this type numerically. The easiest way to find the solution P numerically

is by direct iteration of equation (5.36).
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5.3.2 Control of Stochastic Systems

When the external noise is not negligible, wt 6= 0, the control problem has to be

considerably reformulated. First of all, feedback still has to be chosen such that the

closed-loop system is stable. However, the system will never converge exactly to the

target state, since noise will continuously drive it away. Therefore, now the objective

of control is to keep the system as close as possible to the target state for arbitrary

magnitude of noise. Second, the system becomes stochastic and has to be described

probabilistically instead of deterministically, using the stochastic generalization (5.1)

of the map (3.9). In particular, the linearization (4.1) has to be replaced with

∆xt+1 = A∆xt +B∆ut + Ewt, (5.39)

where we defined the new matrix E = DwF(x̄,0, ū), while the Jacobian and the

control matrix are determined as stochastic generalizations of equations (3.12) and

(3.13), A = DxF(x̄,0, ū) and B = DuF(x̄,0, ū).

Similarly to the deterministic case, the linearization (5.39) has to be valid in order

for linear control to succeed. Consequently, the range of permissible deviations ∆xt

from the target trajectory is again maximized by minimizing the control perturbation

∆ut, which brings us back to the functional (5.34). A few changes should be made,

however, in keeping with the probabilistic description of the problem. To make the

value of the functional (5.34) independent of noise, we average it over all possible

noise signals w0,w1, · · ·. In addition, we replace the infinite sum with the infinite

time average to ensure convergence:

V =

〈
lim

T→∞
1

T

T∑
t=0

[
Hs(∆xt) +Hc(∆ut)

] | ∆x0 = ∆xi

〉
. (5.40)

Suppose the noise is described by a stationary zero-mean random process wt, which

is δ-correlated in time, such that1

〈wtw
†
t′〉 = Ξ δt,t′ , (5.41)

1We choose to lower the time index where appropriate for notational convenience.
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where the matrix Ξ describes the spatial correlations of the process. Then the min-

imum of the functional (5.40) is again reached for ∆ut = −K∆xt, but now it is

quadratic in noise, V = Tr(PEΞE†), and is independent of the initial displacement

∆xi [59]. The matrix P is again calculated as the solution of the Riccati equation

(5.36), and the feedback gain K is given by the same expression (5.37) as in the

noise-free case. In other words, for the kind of noise considered here the feedback

gain calculated in the assumption of completely deterministic dynamics is, in fact,

optimal in the stochastic case as well.

In the presence of nonvanishing noise and with the control turned on, the system

will fluctuate about the target state. The statistical measure of the amplitude of this

fluctuation is given by the state correlation matrix Υ = 〈∆xt∆x†t〉, which can be

easily found analytically, provided the process noise is not correlated with the system

state, 〈∆xtw
†
t〉 = 0. Indeed, the stochastic closed-loop system with feedback gain K

is described by the dynamical equation

∆xt+1 = (A−BK)∆xt + Ewt. (5.42)

Multiplying equation (5.42) by its transpose and taking the average yields

Υ = (A−BK)Υ(A−BK)† + EΞE†, (5.43)

and, since the matrix A − BK is stable, the solution in the form of the convergent

series is obtained:

Υ =
∞∑

n=0

(A−BK)nEΞE†(A−BK)n†. (5.44)

We note that Υ is a linear function of Ξ, so that the average deviation from the target

state is linearly proportional to the strength of noise. As a result, the ratio of the

two is an invariant quantity dependent only on the choice of feedback gain K. It is

called the noise amplification factor and is defined thus:

ν ≡
[〈|∆xt|2〉
〈|wt|2〉

]1/2

=

[
Tr(Υ)

Tr(Ξ)

]1/2

. (5.45)

Clearly, the smaller ν is, the better the control setup can suppress noise. Examination
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of the definition (5.40) with Q = I and R = 0 shows that V = Tr(P0EΞE†) = Tr(Υ0).

Consequently, the minimal value of the noise amplification factor

ν0 =

[
Tr(P0EΞE†)

Tr(Ξ)

]1/2

(5.46)

is achieved for the optimal feedback gain K = K0 calculated using equations (5.36)

and (5.37) with Q = I and R = 0.

5.3.3 Time-Periodic States

So far our discussion of the linear-quadratic control method was limited to time-

invariant target states. If the target state is periodic with period τ > 1, the analysis

does not change conceptually. However, minimal number of technical modifications

of the algorithm have to be made in order to solve the time-periodic control problem

using the formalism outlined in previous sections. Let us denote the target state x̄t,

where due to the periodicity x̄t+τ = x̄t. Linearizing the stochastic evolution equation

(5.1) about x̄t yields

∆xt+1 = At∆xt +Bt∆ut + Etwt, (5.47)

where the Jacobian At = DxF(x̄t,0, ū), the control matrix Bt = DuF(x̄t,0, ū), and

the matrix Et = DwF(x̄t,0, ū) all become time-varying and periodic in the index t.

Similarly to the noisy time-invariant case, the objective of control is to minimize

the deviation from the target trajectory, simultaneously minimizing the magnitude

of control perturbations. The optimal feedback that achieves this objective can again

be found by minimizing the functional (5.40) with the weights Q and R which can,

in principle, be chosen time-periodic, thus acquiring the time index as well. The

minimum of the functional is again reached for ∆ut = −Kt∆xt, where the feedback

gain now also becomes time-periodic:

Kt = (Rt +B†
tPt+1Bt)

−1B†
tPt+1At. (5.48)

The matrix P t denotes the time-periodic solution of the system of τ coupled Riccati
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equations (collectively called the discrete periodic Riccati equation)

Pt = Qt + A†tPt+1At − A†tPt+1Bt(Rt +B†
tPt+1Bt)

−1B†
tPt+1At, (5.49)

which can be formally reduced to a single Riccati equation of larger dimensionality

using the following ansatz.

Let us introduce the τnx × τnx cyclic-shift matrix

Z =




0 · · · 0 I

I · · · 0 0
...

. . .
...

...

0 · · · I 0



, (5.50)

consisting of nx × nx zero and unit blocks (we set Z = I if τ = 1), and form block-

diagonal time-invariant matrices A, B, E, Q and R from the sequences of time-

periodic matrices At, Bt, Et, Qt and Rt, respectively, according to the rule

A =



A1

. . .

Aτ


 . (5.51)

Then the solution of the system of equations (5.49) is obtained by finding the block-

diagonal solution

P =



P 1

. . .

P τ


 . (5.52)

of the Riccati equation

P = Q+ A†Z†PZA− A†Z†PZB(R +B†Z†PZB)−1B†Z†PZA. (5.53)

Thus, from the control point of view, the time-periodic linear system (5.47) is formally

equivalent to the time-invariant linear system

∆Xt+1 = ZA∆Xt + ZB∆Ut + ZEWt. (5.54)

A more technical discussion of various numerical techniques used to solve the discrete
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periodic Riccati equations of the form (5.49) can be found in [60].

5.4 Output Feedback Control

Spatiotemporally chaotic dynamics of weakly correlated extended systems are usually

extremely complicated due to a large number of excited degrees of freedom. In other

words, the Hausdorff dimension nh
s of the respective chaotic attractor is very high.

As a result, local dynamics in the vicinity of a typical target trajectory x̄t embedded

in the attractor will also involve a large number of degrees of freedom. On the other

hand, it can be argued that the precision in the evaluation of the linear model (3.11)

obtained as a result of the local phase space reconstruction is much more important

than the precision in the evaluation of the state of the system during control. As a

consequence, one might be forced to use an extended set of nr
y À n̄y independent

observables during the identification stage,

yr(t) =

[
y(t)

ya(t)

]
, (5.55)

where y(t) is the set of ny observables used for both system identification and control,

and the vector ya(t) represents the nr
y − ny additional observables used only for

system identification. (In case of spatially extended systems it might correspond to

monitoring the system at additional spatial locations.) This is especially helpful if

there is considerable amount of noise, in which case the noise reduction techniques

mentioned in section 3.4 can be employed to use additional data to improve the

accuracy of the linear model.

If ny < nr
y, we cannot construct the state xk of the system from the measurements

of the output y(t) no matter how many successive measurements y(tk),y(tk +TD), · · ·
are made. Furthermore, since the state of the system is not available, we cannot use

the control techniques described above to calculate the feedback ∆uk, because they all

assume that the state is known. Fortunately, there is a way out. First of all, assuming

that the same delay times are used during both system identification and control, we

conclude that the measured output is just a linear function of the actual state xk.
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One can, therefore, try to dynamically construct an estimate x̂k of the actual state

of the system using the output and find the feedback based on this estimate. That

turns out quite doable, provided the model equations describing the local dynamics

are available. This approach is usually called output feedback control.

Similar situation occurs when the model equations for the system under considera-

tion are known a priori, but direct determination of the system state is inconvenient,

impractical, or just impossible — the situation often encountered in real experimen-

tal systems. In order to compensate for the lack of knowledge about the state of the

system, in addition to the control structure that employs feedback (controller), we

will need to introduce another structure, usually called the filter, that would monitor,

collect and process the available information about the system with the purpose of

reconstructing its actual state with the best accuracy possible. Since the errors intro-

duced by the filter become amplified by control, it is equally as important to have an

optimal filter as it is to have optimal control. Optimal filtering techniques derived for

the dynamic state reconstruction problem [59] have much in common with optimal

control techniques. As a consequence, similar results often apply.

5.4.1 Dynamic State Reconstruction

We are interested in reconstructing the system state only in the vicinity of the target

state x̄t, where the dynamics of the system is described with adequate precision

by the linearized evolution equation (5.47). Assume that a (vector) output yt of

the system can be measured. In general, the measurements are imperfect, with the

deviation from the perfect values described by the measurement errors, represented

by an nv-dimensional vector vt:

yt = G(xt,vt). (5.56)

For simplicity let us also assume that the target state is time-invariant. Linearizing

the output (5.56) in the vicinity of the target state and introducing the notation

∆yt = G(xt,vt)−G(x̄,0), one obtains:

∆yt = C∆xt +Dvt, (5.57)
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where C = DxG(x̄,0) and D = DvG(x̄,0).

In general, the problem of dynamical state reconstruction can be cast in a num-

ber of different ways. Here we pursue the one which is most easily treated in the

framework of optimal control. Our goal is to use the available information about the

system, i.e., the time series of control and output signals, to construct a vector ∆x̂t,

which we call the state estimate, that would approximate the actual state ∆xt. First

of all, similarly to the dynamics of the actual state, the dynamics of the state estimate

at time t should depend deterministically on the present value of the state estimate

∆x̂t, the control perturbation ∆ut and the output ∆yt. Consistent with our linear

approximation we obtain the general dynamical equation of the form

∆x̂t+1 = Â∆x̂t + B̂∆ut + K̂∆yt, (5.58)

where Â, B̂ and K̂ are some as yet undefined matrices. Next, notice that in the

absence of noise and measurement errors, if the state estimate and the actual state

coincide at time t0, they should coincide at all later times t > t0 as well, and, therefore,

equation (5.58) should coincide with equation (4.1) upon substituting (5.57) with

vt = 0 for arbitrary ∆ut and ∆x̂t = ∆xt:

∆xt+1 = (Â+ K̂C)∆xt + B̂∆ut. (5.59)

This requires Â = A− K̂C and B̂ = B, so that (5.58) yields the dynamical equation

∆x̂t+1 = A∆x̂t +B∆ut + K̂(∆yt − C∆x̂t), (5.60)

where K̂ is called the filter gain matrix. Finally, we need ∆x̂t to be a good estimate

of the actual state, i.e., the difference ∆x̃t = ∆xt − ∆x̂t between the actual state

and its estimate should be small even when finite noise or measurement errors are

present. Subtracting (5.60) from (5.39) and substituting (5.57) we obtain

∆x̃t+1 = (A− K̂C)∆x̃t + w̃t, (5.61)

where w̃t = Ewt − K̂Dvt denotes the sum of all stochastic terms on the right-hand
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side of equation (5.61). This equation has the same form as equation (5.42) for the

stochastic closed-loop system and, as a consequence, the matrix A′ = A− K̂C has to

be stable.

A number of comments should be made regarding the state reconstruction problem

in the absence of noise and measurement errors. First of all, if the matrix A′ is stable,

the estimate x̄ + ∆x̂t asymptotically (in a finite number of steps, if A′ is nilpotent)

converges to the actual state xt. Strictly speaking, if the matrix A′ is stable, but not

nilpotent, the estimate will never exactly coincide with the actual state. However,

since the convergence is exponential, arbitrarily good approximation is obtained after

a logarithmically small number of steps.

Second, the state reconstruction problem is effectively equivalent to the chaotic

synchronization problem [61; 62]. Indeed, the original system (5.1) can be thought of

as the drive system, the filter (5.60) as the response system, and the output (5.56) as

the driving signal. Clearly the two systems will become synchronized in the vicinity of

the target state (see, e.g., the discussion in [62]), with the response system following

the evolution of the drive system.

Third, unlike the system identification problem considered in chapter 3, in the

dynamic state reconstruction problem the dynamical equations are assumed to be

known and are used to reconstruct the state of the system. However, similarly to the

state identification problem, the output (5.56) has to satisfy a number of conditions in

order for the state reconstruction problem to have a solution. Following the discussion

in section 4.5 we define the discrete-time version of the observability condition for the

matrix pair (A,C) which ensures that the state of the system can be reconstructed

given the measurement of the output. The dynamical system defined by equations

(4.1) and (5.57) or the pair (A,C) is said to be observable if, for any times tf−ti ≥ nx,

the initial state ∆xti = ∆xi can be determined from the measurement of control

perturbation ∆ut and output ∆yt in the interval t ∈ [ti, tf ].

Similarly to the continuous-time case, the observability condition is formally equiv-

alent and dual to the controllability condition for the matrix pair (A†, C†) and, as

a result, the restrictions imposed on the output signal (5.57) are identical to those

derived in section 4.5. We, therefore, conclude that the observability condition has
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the same fundamental role in the problem of dynamical state reconstruction as the

controllability condition has in the control problem.

5.4.2 Linear-Quadratic Filter

If nonzero noise and/or measurement errors are present, the estimate does not con-

verge to the actual state, but fluctuates about it, being constantly driven away by

noise. The precision with which the actual state is approximated depends not only

on the strength of noise, but also on the choice of the filter gain K̂. Assuming the

measurement errors are random, unbiased, δ-correlated in time,

〈vtv
†
t′〉 = Θ δt,t′ , (5.62)

and uncorrelated with the process noise, 〈wtv
†
t′〉 = 0, we conclude that w̃t is a

stationary zero-mean random process with correlation

〈w̃tw̃
†
t′〉 = (K̂R̂K̂† + Q̂) δt,t′ , (5.63)

where we introduced the shorthand notations R̂ = DΘD† and Q̂ = EΞE†. As a

consequence, the optimal filter gain can be found using the linear-quadratic formalism

described in the previous sections. Specifically, we determine the optimal filter gain

by requiring the estimation error of the form

V̂ (d) = lim
t→∞

〈
∆x̃†tdd†∆x̃t

〉
(5.64)

to be minimal for every vector d selected (e.g., d = (1, 0, · · · , 0), which corresponds

to minimizing the mean-squared error in the first component of the state vector).

It turns out [59] that the stochastic time-invariant optimal state estimation prob-

lem defined by equations (5.60) and (5.64) is formally equivalent (and dual) to the

deterministic time-invariant optimal control problem defined by equations (4.1) and

(5.34), with the following correspondence between parameters: A ↔ A†, B ↔ C†,

Q ↔ Q̂, R ↔ R̂, ∆x0 ↔ d, P ↔ S and K ↔ K̂†. As a result, the minimal value of



85

the estimation error, V̂ (d) = Tr(Sdd†), is reached for

K̂ = ASC†(R̂ + CSC†)−1, (5.65)

where S is the solution of yet another discrete-time Riccati equation

S = Q̂+ ASA† − ASC†(R̂ + CSC†)−1CSA†. (5.66)

As we have seen in section 5.3.1, in order to guarantee the existence of a positive defi-

nite solution S to equation (5.66), the pair of matrices (A†, C†) should be controllable

or, equivalently, the pair of matrices (A,C) should be observable.

The generalization to periodic target states can be accomplished using the pro-

cedure discussed in section 5.3.3. Assuming the period of the target state is τ , we

construct the constant matrices A, C, Q̂ and R̂ from the respective time-periodic ma-

trices according to the rule (5.51). The optimal filter gain K̂t becomes time-periodic

as well and is determined by

K̂t = AtSt−1C
†
t (R̂t + CtSt−1C

†
t )
−1, (5.67)

where St+τ = St, and S1 through Sτ are the blocks found on the diagonal of the

block-diagonal solution S of the Riccati equation

S = Q̂+ AZSZ†A† − AZSZ†C†(R̂ + CZSZ†C†)−1CZSZ†A†. (5.68)

Putting all the pieces together, one finally concludes that the time-periodic output

feedback control problem with additive noise

∆xt+1 = At∆xt +Bt∆ut + Etwt,

∆yt = Ct∆xt +Dtvt, (5.69)

requires the feedback ∆ut, calculated according to the equations

∆x̂t+1 = (At −BtKt − K̂tCt)∆x̂t + K̂t∆yt,

∆ut = −Kt∆x̂t. (5.70)
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This construction is called the Kalman-Bucy filter in control theory. Furthermore,

using the fact that ∆x̂t and ∆x̃t are uncorrelated, it can be shown [59] that the

feedback gain Kt and filter gain K̂t in equation (5.70) which are optimal with respect

to (minimize) the performance measure

V = lim
t→∞

〈
H t

s(∆xt) +H t
c(∆ut)

〉
(5.71)

are given by (5.48) and (5.67) (H t
s(∆xt) and H t

c(∆ut) are defined by (5.35) with

time-varying matrices Qt and Rt).

Finally, we should note that in the case of output feedback control one cannot

measure the distance to the target trajectory directly, because the actual state of

the system is not available. However, if the system is sufficiently close to the point

x̄t0 at time t, the difference yt −G(x̄t0 ,0) should be small. Verifying this condition

at a succession of times usually ensures that the system indeed closely follows the

trajectory x̄t0 , x̄t0+1, · · ·. The state estimate ∆x̂t can be reset to zero when the system

is far from the target state and filtering should be turned on simultaneously with

feedback when the system approaches one of the points x̄t0 , t0 = 1, · · · , τ of the

target trajectory.

5.4.3 Worst Case Control

So far we assumed that the noise and measurement errors are zero-mean, random

and uncorrelated with the state of the system and with each other. However, this

assumption is also an idealization. For instance, deviations stemming from neglecting

nonlinear terms in the evolution equation (3.9) or from modeling errors (imprecise

evaluation of internal parameters of the system) will, in general, be both biased and

correlated with the state of the system. As a result, the linear-quadratic analysis

will be, strictly speaking, invalid. Since we usually know the properties of neither the

noise wt nor the measurement errors vt present in the system, it is often advantageous

to take a different approach to the control problem.

First of all, there is no reason to distinguish between noise and measurement errors,

since both are unknown and act as a destabilizing factor in the control problem. We,
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therefore, combine them in a single vector

ŵt =

[
wt

vt

]
. (5.72)

If we also define the matrices

Êt = [Et 0nx×nv ],

D̂t = [ 0ny×nw Dt ], (5.73)

the dynamical equations (5.69) can then be rewritten in the equivalent form

∆xt+1 = At∆xt +Bt∆ut + Êtŵt,

∆yt = Ct∆xt + D̂tŵt. (5.74)

The objective of the algorithm presented below is to find an output feedback law

similar to (5.70) that would achieve the stabilization of the target trajectory x̄t for the

worst case sequence of perturbations ŵ0, ŵ1, · · · from the class of all perturbations

bounded in the appropriate vector norm (which automatically guarantees stabilization

in the presence of an arbitrary sequence of bounded perturbations). In the mathe-

matical terms the goal of the worst case control (also called H∞ control in control

theory) can be stated as the minimization of the induced power norm of the transfer

operator T : ŵ → ∆z defined as

γ ≡ ‖T‖P = max
‖ŵ‖P <∞

‖∆z‖P

‖ŵ‖P

, (5.75)

where the nz-dimensional performance vector

∆zt = F t∆xt +Gt∆ut (5.76)

gives the weighted measure of the deviation from the target state, and the power

norm is defined as

‖z‖P ≡
[

lim
T→∞

1

T

T∑
t=0

|zt|2
]1/2

. (5.77)

The weight matrices F t and Gt are seen to be direct analogs of the weight matrices
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Qt and Rt used in the linear-quadratic approach. Indeed, choosing Gt and F t such

that G†tFt = 0, F †t Ft = Qt and G†tGt = Rt, one obtains

‖∆z‖2
P = lim

T→∞
1

T

T∑
t=0

[
H t

s(∆xt) +H t
c(∆ut)

]
. (5.78)

The solution to the time-periodic output feedback control problem defined by

equations (5.74), (5.75) and (5.76) can be obtained using the generalization of the

results of H∞ control theory [51] for linear time-invariant systems. In particular,

Dullerud and Lall showed [63] that, if a stabilizing linear feedback exists, it could be

written as

∆x̂t+1 = Ât∆x̂t + B̂t∆yt

∆ut = Ĉt∆x̂t + D̂t∆yt, (5.79)

where Ât, B̂t, Ĉt, and D̂t are matrices with the same periodicity τ as the target orbit

x̄t, and x̂t is the nx̂-dimensional internal state of the controller. This setup can be

considered a direct generalization of the Kalman-Bucy filter (5.70).

Let us construct constant block-diagonal matrices A, B, C, D̂, Ê, F , and G ac-

cording to the rule (5.51). Using these matrices it can be shown [63] that a stabilizing

feedback of the form (5.79) with nx̂ ≥ nx for the system (5.74) exists and the closed-

loop performance inequality γ < 1 is satisfied, if and only if there exist positive

definite block-diagonal matrices P and S, satisfying linear matrix inequalities

[
P I

I S

]
≥ 0 (5.80)

and

[
N †

S 0

0 I

]

A†Z†SZA− S A†Z†SZÊ F †

Ê†Z†SZA Ê†Z†SZÊ − I 0

F 0 −I




[
NS 0

0 I

]
< 0,

[
N †

P 0

0 I

]

APA† − Z†PZ APF † Ê

FPA† F †PF − I 0

Ê† 0 −I




[
NP 0

0 I

]
< 0, (5.81)
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where the unitary matrices NP and NS satisfy

ImNP = ker [B† G† ]

ImNS = ker [C D̂ ] . (5.82)

The feedback law corresponding to thus found matrices P and S, in general, will

not be optimal. The optimal feedback can be found by executing the following algo-

rithm. Let us rescale the weight matrices F t and Gt by the factor of 1/γ0, such that

the above condition tests for γ < γ0 instead of γ < 1. If the corresponding matrices

P and S can be found, we decrease γ0 and repeat the process until the test fails.

Standard software exists to do this. If there is any linear stabilizing controller, we

can, therefore, find it using this algorithm. Strictly speaking, this algorithm will yield

a feedback that will not be optimal, but will be very close to the optimal feedback,

which is adequate for all practical purposes. Once the block-diagonal matrices

P =



P 1

. . .

P τ


 and S =



S1

. . .

Sτ


 (5.83)

corresponding to the smallest γ0 are determined, the matrices in (5.79) can be found

using the following procedure. First, construct nonsingular matrices M t and N t, such

that

MtN
†
t = I − PtSt (5.84)

and determine X t as the solution of the matrix equation

[
St I

N †
t 0

]
= Xt

[
I Pt

0 M †
t

]
. (5.85)

Next, define the matrix

Y t =




−X−1
t+1 Ãt Ẽt 0

Ã†t −Xt 0 F̃ †t

Ẽ†
t 0 −I 0

0 F̃t 0 −I



, (5.86)
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where we introduced the shorthand notations for the blocks

Ãt =

[
At 0

0 0

]
, Ẽt =

[
Êt

0

]
, F̃ t = [F t 0 ] , (5.87)

and the matrices

W t = [W t
1 W t

2 W t
3 W t

4 ] ,

U t = [U t
1 U t

2 U t
3 U t

4 ] , (5.88)

where we denoted

W t
1 =

[
0 I

B†
t 0

]
, W t

2 =

[
0 0

0 0

]
, W t

3 =

[
0

0

]
, W t

4 =

[
0

G†t

]
(5.89)

and

U t
1 =

[
0 0

0 0

]
, U t

2 =

[
0 I

Ct 0

]
, U t

3 =

[
0

D̂t

]
, U t

4 =

[
0

0

]
. (5.90)

Finally, the matrices Ât, B̂t, Ĉt and D̂t can be extracted from the solution

V t =

[
Ât B̂t

Ĉt D̂t

]
(5.91)

of the linear matrix inequality

Yt + U †t V
†
t Wt +W †

t VtUt < 0. (5.92)

Despite the complicated algebra, linear matrix inequalities such as (5.80) and

(5.92) can be conveniently solved using the tools of convex optimization theory, which

have one very important feature — namely guaranteed convergence. This feature is

especially valuable if the evolution operators of the linearized system (5.74) are highly

degenerate, which routinely happens in weakly coupled extended chaotic systems (we

will see an example of this in chapter 6). On the negative side, solving linear matrix

inequalities is usually more time consuming compared to nonlinear matrix equations

like the Riccati equation (5.36).
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5.5 Degeneracies and Blowups

In the conclusion of the chapter we return to the state feedback control problem,

which allows one to compare the performance of the four techniques we discussed

above: OGY control, dead-beat control, linear-quadratic control and worst case con-

trol. Since the latter two techniques are optimized for stochastic applications, they

clearly provide far superior performance in this case. Instead we consider the deter-

ministic case, where the benefits of the optimal control techniques are not immediately

apparent. Alas, even in this case OGY control and dead-beat control do not perform

on par with the optimal control techniques.

Although both OGY control and dead-beat control work adequately well in most

circumstances, they have a common deficiency, which limits their applicability to

extended systems, which are the focus of the present study. As we noted above, the

assumption under which the solutions (5.12) and (5.27) are defined is violated when

the matrices S̃t and C̃t, respectively, become singular for some t. It is easy to see

that this routinely happens in a seemingly innocent situation when the Jacobian At

becomes close to a multiple of a unit matrix at a certain point on the target trajectory:

At0 = α(I + εH), (5.93)

where α = O(1) is a constant, ε¿ 1 is a constant, and H is an arbitrary matrix with

the unit norm. This situation can be a result of accidental degeneracy, but may also

be a consequence of the weak symmetry violation in a highly symmetric system (see,

e.g., the discussion in section 4.4 and later in section 6.2.2).

For simplicity, consider the single-parameter case and assume that the control

matrix is constant, B = b = const. It is rather easy to see that the magnitude of

the control perturbation calculated using both OGY approach and dead-beat control

diverges during the iteration t = t0−1, |∆ut0−1| → ∞ as the Jacobian At0 approaches

a multiple of a unit matrix, ε→ 0. Indeed, let us calculate the feedback gain at time

t = t0 − 1. For instance, for the dead-beat control method nt = nx and (5.29) gives

Kt0−1 = [ 0 · · · 0 1 ](C̃t0+nx−2)
−1J t0+nx−2

nx
, (5.94)
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where the matrix C̃t0+nx−2 coincides with the controllability matrix (4.68) evaluated

for t = t0 + nx − 2:

C̃t0+nx−2 = [b · · · J t0+nx−2
nx−2 b J t0+nx−2

nx−1 b ]

= [b · · · J t0+nx−2
nx−2 b J t0+nx−2

nx−2 At0b ]

= [b · · · J t0+nx−2
nx−2 b αJ t0+nx−2

nx−2 b + εαJ t0+nx−2
nx−2 Hb ] , (5.95)

with the two last columns which become degenerate as ε vanishes. In order to eval-

uate the gain matrix Kt0−1 one needs to calculate the inverse of C̃t0+nx−2 which is

most easily accomplished using the singular value decomposition C̃t0+nx−2 = QΣR†

(compare this to the the discussion in section 4.4). Let us define the matrix S such

that

S = ΣR† = Q†C̃t0+nx−2

= [Q†b · · · Q†J t0+nx−2
nx−2 b αQ†J t0+nx−2

nx−2 b + εαQ†J t0+nx−2
nx−2 Hb ] , (5.96)

whose two last columns also become degenerate for vanishing ε and arbitrary Q. We

can use this fact to obtain the relation between the elements of the two last rows of

the matrix R:

σi(ε)Rnxi = Sinx = αSinx−1 +O(ε) = ασi(ε)Rnx−1i +O(ε), (5.97)

where σi(ε) = Σii denote the singular values. Similarly to section 4.4 we conclude

that the smallest singular value scales linearly with ε, σnx(ε) = O(ε), while the rest

of the singular values do not, σi(ε) = O(1), i = 1, · · · , nx − 1. Discarding the terms

of order ε we, therefore, obtain Rnxi = αRnx−1i for all i = 1, · · · , nx − 1. The relation

for Rnxnx and Rnx−1nx can be obtained using the fact that R is an orthogonal matrix,

so that
nx∑
i=1

R2
nxi = 1,

nx∑
i=1

R2
nx−1i = 1,

nx∑
i=1

RnxiRnx−1i = 0. (5.98)

After trivial manipulations we obtain Rnx−1nx = −αRnxnx and, consequently,

Rnxnx = [α2 + 1]−1/2 = O(1). (5.99)
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According to equation (5.96), the degeneracy only affects the structure of the matrices

R and Σ, but not Q, so all elements of Q are generically of order one and, in particular,

Qknx = O(1), k = 1, · · · , nx. Finally, writing down the elements of the feedback gain

matrix (5.94) we obtain

Kt0−1
j =

nx∑

k=1

(R(Σ)−1Q†)nxk(J
t0+nx−2
nx

)kj

=
nx∑
i=1

Rnxiσ
−1
i

nx∑

k=1

Qki(J
t0+nx−2
nx

)kj

≈ [α2 + 1]−1/2σ−1
nx

nx∑

k=1

Qknx(J
t0+nx−2
nx

)kj. (5.100)

As a result, the feedback

∆ut0−1 = −
nx∑
j=1

Kt0−1
j ∆xt0−1

j = O(ε−1)|∆xt0−1| (5.101)

diverges for (almost) every ∆xt0−1 6= 0 as ε vanishes, leading to the divergence of the

noise amplification factor (5.45).

The same statement holds for the OGY type control. According to (5.15), the

evaluation of the feedback gain Kt0−1 requires taking the inverse of the stabilizability

matrix (5.12) with t = t0 + nu
x − 2:

S̃t0+nu
x−2 = [ e

t0+nx
u−1

1 · · · J
t0+nu

x−2
nu

x−2 b αJ
t0+nu

x−2
nu

x−2 b + εαJ
t0+nu

x−2
nu

x−2 Hb ] , (5.102)

whose two last columns become degenerate for vanishing ε, similarly to the case of

dead-beat control (compare with (5.95)). Therefore, the same analysis and conclu-

sions apply.

Similar statements can be made in the more general multi-parameter case. In other

words, the blowup of the control perturbation is not an artifact of the single-parameter

realization of the above techniques, but rather a generic feature that transpires in cer-

tain conditions, specifically, when the Jacobian becomes highly degenerate at a certain

point on the target trajectory. This kind of blowup appears even more surprising if

|α| < 1, when the matrix At0 is stable and, intuitively, no control is needed.
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It can be argued that the situation considered above is highly relevant for many

systems, specifically systems with symmetries. For instance, many spatially extended

chaotic systems with low degree of spatial correlation can be thought of as a num-

ber of identical spatially distributed and weakly coupled subsystems. The diagonal

elements of the Jacobian matrix (5.93) would then describe local dynamics of each

subsystem, while the off-diagonal elements would correspond to weak interactions

between subsystems and will, therefore, be small. An example of such an extended

system will be studied in detail in chapter 6.

Here we consider another example, a system of two identical chaotic systems with

mistuned parameters, each modeled by a one-dimensional chaotic map. Since the

choice of the map is not important, we take the most often used one, the logistic

map. Furthermore, we assume that the systems are weakly and unidirectionally

coupled (bidirectional coupling can be chosen as well), so that the combined dynamics

is described by the following two-dimensional map:

xt+1
1 = a1x

t
1(1− xt

1) + ∆ut

xt+1
2 = a2x

t
2(1− xt

2) + ε(xt
1 − xt

2)−∆ut, (5.103)

where ∆ut denotes the feedback we use to control the system. The parameters are,

respectively, a1 = 3.8, a2 = 4.0, and ε = 0.01. As a target state we choose a period-six

trajectory x̄t, which makes the Jacobian

At =

[
a1(1− 2x̄t

1) 0

ε a2(1− 2x̄t
2)− ε

]
(5.104)

almost degenerate at time t = t0 = 1, when α = a1(1 − 2x̄1
1) = a2(1 − 2x̄1

2) + O(ε),

such that

A1 = α

[
1 0

O(ε) 1 +O(ε)

]
. (5.105)

The feedback is chosen such that the control matrix is constant

B = b =

[
1

−1

]
, (5.106)
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Figure 5.2: Basin of attraction of the closed-loop system at the point x̄6 of the period-six target
trajectory. The boundary is found numerically for feedback corresponding to dead-beat control
(solid line), linear-quadratic control (dashed line), and worst case control (dotted line).

so that the results of the above analysis directly apply. In order to illustrate the

blowup effect and compare the performance of different feedback control techniques,

we numerically calculate the basin of attraction of the resulting nonlinear closed-loop

system obtained upon substituting the respective feedback law into the map (5.103)

at time t = (t0 − 1) mod 6 = 6. (For the worst case control, we set Ct = I in (5.74),

so that the output ∆yt coincides with the state ∆xt.) The results are presented in

figure 5.5.

One can clearly see that the basin of attraction NDBC(x̄6) corresponding to the

dead-beat control technique is extremely narrow, due to the blowup effect described

above. The direction along which the basin of attraction is aligned can be extracted

from (5.100) by solving the equation

K6
1∆x1 +K6

2∆x2 = 0, (5.107)

which determines where the diverging contributions to the feedback (5.101) from

different degrees of freedom cancel out. On the contrary, the basins of attraction
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corresponding to the linear-quadratic control and worst case control are rather large.

To get a quantitative description of the size of the basin of attraction in each case,

we calculated the smallest distance δx from the point x̄6 of the target trajectory to

the boundary of the basin of attraction. The numerical values, δxDBC ≈ 2.7× 10−4,

δxLQC ≈ 1.0× 10−2, and δxWCC ≈ 8.8× 10−3 speak strongly in favor of the optimal

control techniques. As we determined in section 5.3.1, the size of the domain of

attraction is critical for the success of linear feedback control, especially if the system

is high-dimensional, which makes either of the optimal control techniques a superior

choice for controlling spatiotemporally chaotic dynamics.

A few comments should be made. First of all, neither the linear-quadratic control

nor the worst case control were tuned to obtain the largest possible basin of attraction

(which can be accomplished using the methods of robust control [51]). So the results

obtained primarily emphasize how narrow the basin of attraction corresponding to

the dead-beat control is compared to the other two methods. Second, in the present

thesis we limit ourselves to considering the problem of linear control. However, by

using nonlinear control [64] it is often possible to make target trajectory the global

attractor, especially for simple systems like the one considered here.
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Chapter 6 Extended Chaotic Systems

6.1 The Model

Now that we have constructed the formalism that can handle symmetric deterministic

as well as stochastic systems, the problem of controlling a general extended chaotic

system seems rather straightforward. First we need a mathematical model, or a set

of dynamical equations describing the evolution of a given experimental system. As-

suming no theoretical model of the system is available, the dynamics will have to be

reconstructed using the time series measurement of a set of observables consistent

with the symmetry, as discussed in chapter 3 and section 4.5. The reconstruction has

a hidden benefit. Extended systems are often infinite-dimensional. The methods of

control theory, though, are only applicable to finite-dimensional systems. Therefore,

some sort of dimensional reduction, such as a Galerkin truncation [38], has to be per-

formed anyway (discussion of other model reduction techniques is available in many

control theory texts, e.g., [51]). However, since the chaotic attractor of finite extended

systems is typically finite-dimensional, the reconstructed dynamics will automatically

be finite-dimensional.

Consistent reconstruction will yield a model, which should preserve the symmetries

of the system. However, most of the information regarding the local properties of the

original system will be lost. As we will see below, the locality of interactions in the

system is important both for the analysis of the control problem and for the interpre-

tation of the obtained results. As a consequence, the loss of the local structure would

prevent us from gaining a valuable system-independent insight. Therefore, instead

of considering the reconstructed mathematical model of some specific experimental

system we select a model system which, on the one hand, has the dynamics and the

spatiotemporal structure characteristic of extended spatiotemporally chaotic systems

in general and, on the other hand, is simple enough to analyze and compute. In

particular, we require the model system to be symmetric. In order to facilitate the
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analysis we also require the model to be finite-dimensional, which puts the system

on a spatial lattice. Furthermore, since the analysis of continuous- and discrete-time

systems is very similar, we choose to discretize time as well. It can be argued that the

results obtained after this reduction should still be applicable to extended systems in

general, continuous or discrete in space as well as time.

We do not regard our model as an exact description of the dynamics of any par-

ticular system, but rather as an approximation that captures the behavior of the

dominant modes of the actual system. The state xt of our finite-dimensional approx-

imation cannot fully represent the state of the infinite-dimensional system either.

Therefore, the dynamics of the state vector xt should be affected (however weakly)

by the unmodeled dynamics of unaccounted degrees of freedom as well as the unknown

interaction with the environment. Consequently, the evolution equation should in-

clude both deterministic and stochastic components. The effect of the latter is usually

rather small and can be treated as random noise wt (often called the process noise).

As a result, the evolution equation should be of the form (5.1) rather than the form

(3.9) assumed in chapters 3 and 4.

Since interactions in extended physical systems often have a rather short range, if

we associate one degree of freedom xt
i with each site i of the spatial lattice, we can

neglect the dependence of the dynamics of a variable xt
i on the variables xt

j associated

with all lattice sites j, except the few nearest neighbors of the site i. (We do not con-

sider systems with long range interactions here to avoid unnecessarily complicating

the discussion, although they can be treated equally successfully using the formalism

outlined below.) For simplicity the lattice can be chosen as one-dimensional (this

is often justified for large aspect ratio systems in higher dimensions), and then our

reduced model is naturally represented by a stochastic generalization of the deter-

ministic coupled map lattice (CML) with nearest neighbor diffusive coupling [65]:

xt+1
i = εf(xt

i−1, a) + (1− 2ε)f(xt
i, a) + εf(xt

i+1, a) + Ψi(x
t,wt), (6.1)

where index i = 1, 2, · · · , nx labels the lattice sites, and the last term (we assume

Ψi(x,0) = 0 for every i) represents the net effect of stochastic perturbations at site i.
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Imposing the periodic boundary condition, xt
i+nx

= xt
i, emulates the translational (or

rotational for, e.g., a Taylor Couette system) invariance. We also assume that both

a and ε are the same throughout the lattice.

The local map f(x, a) can be chosen as an arbitrary (nonlinear) function with pa-

rameter a, which typically represents the process of generation of chaotic fluctuations

by the local dynamics of the system, while diffusive coupling typically plays the op-

posite role of dissipating local fluctuations. Therefore, the parameters a and ε specify

the degree of instability and the strength of dissipation in the system, respectively.

For the purpose of control, however, details of the local map are not important. The

only aspect of the control problem affected by any particular choice is the set of

existing unstable periodic trajectories.

Our ultimate goal is to construct a linear control scheme able to stabilize any

steady or time-periodic state of the CML (6.1) of arbitrary length nx in the presence

of nonzero noise and assuming that complete information about the state of the system

is unavailable and has to be extracted from the noisy time series measurement of a

limited number of scalar observables. Furthermore, we would like the control scheme

to provide optimal performance with or without noise and be practically realizable.

In particular, we would like the number of independent control parameters to be much

less than the number of degrees of freedom. The major ingredients of such a control

scheme are expected to be system-independent and, hence, applicable to extended

spatiotemporally chaotic systems in general.

6.2 Control Parameters

6.2.1 Symmetry of the Lattice

Before we proceed with the analysis of the general problem of controlling arbitrary

time-periodic target states of our noisy model (6.1) based on partial measurements of

the state, we study the simplest case of linear steady state control in the absence of

noise and assuming the full knowledge of the state of the system. The solution for the

general case is then obtained as a sequence of rather straightforward generalizations.

The first problem that we face here is that there is no natural choice of control
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parameters in the problem. Besides, as we will see shortly, not every control parameter

is suitable.

The analysis of the controllability condition conducted in chapter 4 shows that,

if the system is symmetric, certain symmetry-imposed restrictions on the choice of

control parameters should be satisfied in order to achieve control. In fact, our model

is by construction highly symmetric. The symmetry is that of the spatial lattice: the

evolution equation (6.1) is invariant with respect to translations by an integer number

of lattice sites (periodic boundary condition makes the group finite) and reflections

about any site (or midplane between any adjacent sites), which map the lattice back

onto itself without destroying the adjacency relationship. The corresponding point

group Cnxv (we assume nx – even) has a total of nx/2 + 3 nonequivalent irreducible

representations. The first four are one-dimensional, d1 = d2 = d3 = d4 = 1, while

the rest nx/2 − 1 are two-dimensional, dr = 2, r ≥ 5. In comparison, breaking

the reflection symmetry reduces the group to Cnx , which only has one-dimensional

irreducible representations.

The dynamical symmetry group can be trivially obtained using the observation

that the Jacobian matrix in the linearized evolution equation (5.47) of the CML (6.1)

can always be represented as a product of two matrices, At = MN t, where

Mij = (1− 2ε)δi,j + ε(δi,j−1 + δi,j+1) (6.2)

describes diffusive coupling, and

N t
ij = ∂xf(x̄t

i, a)δi,j (6.3)

defines the strength of local instability, with δi,j±1 extended to comply with periodic

boundary condition. This partition of the Jacobian explicitly shows how the symme-

try group L depends on the symmetry properties of the nonlinear evolution equation

(6.1) and those of the controlled state x̄t. The matrix M has all the symmetries

imposed by the chosen inter-site couplings of the nonlinear model:

T (g)M = MT (g), ∀g ∈ G, (6.4)
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while the matrix N t has all the symmetries of the target state x̄t:

T (g)N t = N tT (g), ∀g ∈ Hx̄, (6.5)

where similarly to chapter 4, T denotes the matrix representation of L, and Hx̄

is defined as a subgroup of G. Since the Jacobian At commutes with all matrices

that commute with both M and N t, we conclude that generically L = Hx̄ ⊆ G, in

agreement with the general result (4.72).

Since the analysis conducted in chapter 4 is valid for every subgroup L′ of the

dynamical symmetry group, we take L′ = L. Constructing the nx-dimensional repre-

sentation T of L and decomposing it into the sum of the irreducible representations

of Cnxv we easily determine the restrictions imposed by the symmetry on the min-

imal number of control parameters nu and the structure of the control matrix B.

For instance, a zigzag state gives L = Cnv with n = nx/2 and, according to (4.58),

n̄u = 2; a non-reflection-invariant state with spatial period s corresponds to L = Cn

with n = nx/s and n̄u = 1, etc.

Let us consider the uniform target state, which has the highest symmetry possible,

L = Cnxv, in more detail. The decomposition (4.23) gives

T = T 1 ⊕ T 4 ⊕ T 5 ⊕ · · · ⊕ T nx/2+3, (6.6)

and the corresponding basis of normal modes which transform according to these

irreducible representations is given by the eigenvectors of the operators of translation

and reflection, i.e., Fourier modes gi:

(gi)j = cos(jki + φi). (6.7)

Here φi are arbitrary phase shifts, and ki are the wavevectors defined thus: k1 = 0,

ki = ki+1 = πi/nx for i = 2, 4, 6, · · ·, and, for nx – even, knx = π. Fourier modes with

the same wavevectors k define invariant subspaces Lk ⊂ Rnx . The subspaces Lk with

0 < k < π correspond to the representations T r with r ≥ 5, L0 corresponds to T 1,

and Lπ to T 4. Since the two-dimensional irreducible representations are present in

the decomposition (6.6), n̄u = 2. Therefore, in order to control an unstable uniform
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steady state of the coupled map lattice we need at least two control parameters. This

is the reflection of symmetric coupling in the model (6.1). Note that, since every

two-dimensional irreducible representation occurs in the decomposition (6.6) once,

p5 = · · · = pnx/2+3 = 1, according to the results of section 4.2, the minimal number

of control parameters remains the same for a spatially uniform target trajectory of

arbitrary time period τ .

On the other hand, since for any length nx of the lattice the group G = Cnxv

only has one- and two-dimensional irreducible representations and L is a subgroup

of G, it is sufficient to have just two control parameters to make the dynamics of

the coupled map lattice controllable in the vicinity of a target state with arbitrary

symmetry properties and temporal period. Choosing the minimal number of control

parameters, nu = 2, we can determine the conditions making them independent with

respect to a particular target state: the linear response of the CML to perturbation

of the two parameters, given by the columns of the control matrix B = [b1 b2 ], has

to satisfy conditions (4.22) and (4.62).

Failure to satisfy the necessary condition (4.22) rules out the possibility of using

global parameters, such as the coupling ε or parameter a of the local map f(x, a) for

control of symmetric steady states. Taking u = (a, ε), so that

b1 = ∂aF(x̄,0, ū) = M



∂af(x̄1, ā)

...

∂af(x̄nx , ā)


 , (6.8)

and

b2 = ∂εF(x̄,0, ū) = (ε̄)−1(M − I)



f(x̄1, ā)

...

f(x̄nx , ā)


 , (6.9)

we observe that condition (4.22) is only satisfied, if the group L is trivial, L = {e}.
This result holds for both steady and time-periodic symmetric target states.

6.2.2 Locality and Pinning Control

The two major results of the previous section are especially important. First of all,

irrespectively of the length of the lattice nx, it is impossible to control every steady
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or periodic state of the CML (6.1) using a single control parameter. However, an

arbitrary target state can be controlled using two (or more) independent control

parameters. The minimal number of control parameters depends on the symmetry

properties of the target state, and the higher the symmetry is, the stricter require-

ments are imposed on the control scheme. Since we are looking to construct a general

control scheme independent of the details of the particular target state, we assume

that at least two control parameters should be available.

Second, it is impossible to control symmetric target states using global system

parameters, such as a and ε. As a consequence, feedback has to be applied locally.

On the other hand, practical considerations would suggest that it is much easier to use

a number of actuators to perturb the system locally at distinct spatial locations, e.g.,

applying local fields, local pressure gradients, injecting chemical reactants, etc. This

type of feedback represents interaction with the controller considered to be a part of

the environment, and cannot be adequately described using only the internal system

parameters like those characterizing the rate of growth of local chaotic fluctuations

and the strength of spatial dissipation. Instead, it is most naturally described by

generalizing the term Ψi(x
t,wt) in equation (6.1) to include the interaction with the

controller, so that

xt+1
i = εf(xt

i−1, a) + (1− 2ε)f(xt
i, a) + εf(xt

i+1, a) + Ψi(x
t,wt,ut), (6.10)

where now vector ut describes the strength of interaction with the controller. The

equilibrium value ū can be selected arbitrarily, so we will assume ū = 0 below.

Without noise and control the last term in (6.10) vanishes, so one should have

Ψ(x,0,0) = 0. Consequently, the linearization about the target state x̄t again yields

(5.47), but now with Bt = DuΨ(x̄,0,0) and Et = DwΨ(x̄,0,0).

For simplicity we further assume that the interaction between the system and the

controller is limited to only a few lattice sites im, which we call pinnings following Hu

and Qu [15]:
∂Ψi(x,w,0)

∂uj

= 0 (6.11)

for all j and i 6= im, m = 1, 2, · · · , nu. Then, without loss of generality, the control
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matrix B can be chosen as a matrix with dimensions nx × nu:

Bij =
nu∑

m=1

δj,mδi,im , (6.12)

such that ∆ut
m describes the strength of the control perturbation applied at the

lattice site i = im at time t. The number of pinnings (equal to the number of control

parameters) can be, in principle, chosen arbitrarily in the range n̄u ≤ nu ≤ nx, where

n̄u = 2 as we established above.

In fact, the same minimal number of pinnings is required to control one-dimensional

spatially continuous extended system in the most frequently used geometry, a line seg-

ment with the periodic boundary condition, or an annulus. The respective symmetry

group is C∞v = S2×SO(2) (translation restricted by the periodic boundary condition

plus reflection). The most surprising fact is that, in the absence of noise, the minimal

density of pinnings is not bounded from below and is independent of the number of

excited modes and, consequently, strength of spatial correlations in the system.

We model the effect of the process noise by applying uncorrelated random pertur-

bations to each site of the lattice. Combined with the chosen arrangement of pinnings,

this corresponds to picking the stochastic term in equation (6.10) as

Ψi(x
t,wt,ut) =

nu∑
m=1

δi,imu
t
m + wt

i , (6.13)

and, consequently, setting Et = DwΨ(x̄,0,0) = I in the linearization (5.47). Fur-

thermore, we choose the individual perturbations wt
i as independent random variables

uniformly distributed in the interval [−σw, σw], so that the noise correlation matrix

is given by Ξ = (σ2
w/3)I. This latter choice is made to simplify the interpretation of

the results and does not affect the control problem otherwise.

Localized control has its downside. In the weak coupling limit, ε→ 0, the coupled

map lattice with local feedback becomes a weakly controllable system. The symmetry

of the lattice of uncoupled maps is described by the permutation group G = Snx , while

the linearization about a uniform target state increases the symmetry to L = GL(nx):

since the respective Jacobian is a multiple of the unit matrix, Aij = ∂xf(x̄, ā)δi,j, the
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linearized system is symmetric with respect to all (complex) nonsingular coordinate

transformations. When coupling is restored, ε > 0, the symmetry of both the nonlin-

ear evolution equation (6.1) and its linearization (5.47) reduces to G ′ = L′ = Cnxv.

The matrix representation T of the group GL(nx) in Rnx is already irreducible.

Consequently, nu = nx independent control parameters are required to control the

steady uniform state of the uncoupled lattice. This result is rather intuitive. Obvi-

ously, one can no longer control the system applying control perturbations at just two

lattice sites, i1 and i2. Since the control perturbation does not propagate to adjacent

sites of the lattice, feedback has to be applied directly at each site.

If the coupling is nonzero, but very small, the controllability property is restored

for nu = 2, but, according to section 4.4, feedback of very large magnitude is required

to control the system due to parametric deficiency. Indeed, in order to affect the

dynamics at site i away from i1 and i2 the control has to propagate a certain distance

decaying by roughly a factor of ε per iteration. As a result, the magnitude of the

perturbation required to control an arbitrary site of the lattice diverges approximately

as ε−nx/2 for ε→ 0, resulting in the loss of control [14]. This effect will be discussed

in more detail in section 6.5.2.

6.3 Periodic Array of Pinnings

Symmetric target states are arguably the most practically interesting and important

of all, so these will be the focus of the discussion that follows. It is no accident that

by far the most common target state, a spatially uniform time-invariant state x̄1 =

· · · = x̄nx = x̄, is the state which has the highest symmetry and, as a consequence,

requires the controller with the most complicated spatial structure. On the other

hand, symmetry usually significantly simplifies the analysis of system dynamics, and

the neighborhood of the steady uniform state benefits most from this simplification.

All of this makes it the perfect target state to test the general results on. Since the

steady uniform state is period one in both space and time, we will often use the

shorthand notation S1T1 for it.

Naively it seems that the most natural choice is to place the pinnings in a periodic
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Figure 6.1: Periodic array of single pinning sites: minimal coupling ε as a function of parameter a.
The dots represent the numerical results from figure 2 of [15], with ε rescaled by a factor of two to
make it compatible with our definition.

array, such that the distance between all nu pinnings is constant, im+1 − im = nd,

∀m. However, it can be shown that with this setup the uniform target state could

only be stabilized with a rather dense array of pinnings, and that the distance nd

sensitively depends on the values of system parameters a and ε. Figure 6.3 shows the

minimal coupling ε for which the stabilization was achieved in the absence of noise in

the numerical experiment [15] as a function of parameter a for several values of nd.

The logistic map

f(x, a) = ax(1− x) (6.14)

with the fixed point x̄ = 1− a−1 was taken as the local chaotic map. In particular, in

the physically interesting interval of parameters 3.57 < a ≤ 4.0, where the indepen-

dent logistic maps are chaotic, control fails unless nd ≤ 3 even for relatively strong

coupling ε = 0.4. It is interesting to note that the distance between periodically

placed pinnings can be increased significantly, if the symmetry of the system is lower,

such as when the parity symmetry is broken [28].

One can easily verify that the control matrix (6.12) calculated for a periodic array

of pinning sites does not satisfy the controllability condition. It is trivial to check
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that the eigenvectors of the Jacobian

A = ∂xf(x̄, a)M (6.15)

are given by the Fourier modes (6.7). This is consistent with the results of the

section 4.1.3: since the uniform state is invariant with respect to both translations and

reflections of the lattice and no irreducible representations of the respective dynamical

symmetry group L = Cnxv occur in the decomposition (6.6) more than once, the

basis vectors of the invariant subspaces Lk should coincide with the eigenvectors of

the invariant Jacobian.

Let us again use the notation bm for the mth column of the matrix B. According

to the results of section 4.1.5, the controllability condition is only satisfied when the

projections of the vectors bm, m = 1, · · · , nu span every invariant subspace Lk. The

pinnings are placed with period nd, so

(gi · bm) = cos([i1 + (m− 1)nd]ki + φi) = 0 (6.16)

for every m, whenever ki = π/nd, 2π/nd, 3π/nd, · · · and φi = i1ki + π/2. As a conse-

quence, only a one-dimensional subspace of Lki will be spanned, while dim(Lk) = 2,

0 < k < π. Therefore, feedback through the periodic array of pinnings does not

affect the normal modes (6.7) whose nodes happen to lie at the pinnings, i.e., modes

with periods 2π/ki equal to 2nd, 2nd/2, 2nd/3, etc., provided those are integer. In

other words, such modes are uncontrollable. (By contrast, in the systems with the

broken parity symmetry, such as the one considered in [28], invariant subspaces are

all one-dimensional and the same arrangement of pinnings leaves no normal modes

uncontrollable.)

The control succeeds only when all uncontrollable normal modes are stable, i.e.,

when the weaker stabilizability condition is satisfied. This, however, imposes excessive

restrictions on the density ρ ≡ nu/nx = 1/nd of pinnings in the array. The condition

for stabilizability can be obtained from the spectrum of eigenvalues of the Jacobian

matrix (6.15):

λi = α(1− 2ε(1− cos(ki)), (6.17)
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where α = ∂xf(x̄, a) = 2− a. Specifically, we need

∣∣∣∣(a− 2)

[
1− 2ε

(
1− cos

(
πj

nd

))]∣∣∣∣ < 1 (6.18)

for all j = 1, · · · , nx−2, such that nd/j is integer. Using this criterion one can obtain

the relation between the minimal coupling, the distance between pinnings nd, and the

parameter a of the local chaotic map for a stabilizable system. For instance, j = 1

yields

ε =
a− 3

2(a− 2)
(
1− cos

(
π
nd

)) . (6.19)

The curves defined by equation (6.19) are plotted in figure 6.3 together with the

numerical results of Hu and Qu [15] and are seen to be in excellent agreement. Alter-

natively, equation (6.19) can be used to find the minimal value of ρ as a function of

a and ε for the target state S1T1. Similar restrictions on the minimal density of pin-

nings can be obtained for target states of arbitrary spatial and temporal periodicity

(e.g., S2T1 and S1T2 [66]).

The analysis of section 6.2 suggests that one can get rid of all uncontrollable modes

placing pinning sites differently. Arranging the pinnings, such that the controllability

condition for the matrices (6.15) and (6.12) is satisfied, will enable us to control the

system anywhere in the parameter space at the same time using a smaller number of

pinnings, simplifying the control setup. What is equally important, similar results are

applicable to spatially continuous systems as well. This means that one can obtain

the restrictions on the mutual arrangement of pinnings for arbitrary extended systems

using symmetry considerations alone.

6.4 Control at the Boundaries

Let us take the minimal number of pinnings, nu = 2, and place them at the lattice

sites i1 and i2. This results in the control matrix

Bij = δj,1δi,i1 + δj,2δi,i2 , (6.20)
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which is independent of the target state. The restrictions imposed by the controlla-

bility condition on the mutual arrangement of the pinnings i1 and i2 are established

trivially. For instance, in the case of the steady uniform target state the length of

the lattice nx should not be a multiple of the distance between pinnings |i2 − i1|,
otherwise the mode with the period 2|i2 − i1| becomes uncontrollable. One partic-

ular arrangement, however, deserves special attention: applying feedback through

the pinnings placed at the “beginning” i1 = 1 and the “end” i2 = nx of the lattice

is equivalent to controlling a spatially uniform system of finite length adjusting the

boundary conditions.

The importance of this arrangement, however, is rather dubious unless there exists

a whole class of periodic trajectories that can be controlled by adjusting the boundary

conditions. In fact, using condition (4.62) one can show that taking the control matrix

in the form (6.20) with i1 = 1 and i2 = nx ensures the controllability of any target

state of the CML (6.10), irrespectively of the symmetry properties of that state. In

the absence of noise this translates into being able to control arbitrary steady or

time periodic states of the coupled map lattice with an arbitrary (but finite) length,

switch between states, track target states as the system parameters change and so

on, which ensures extreme flexibility of the control scheme. If noise is present, the

maximal length of the lattice that can be controlled with two pinnings is limited by

the nonlinearity. This will be discussed in detail in section 6.5.2.

Choosing the set of control parameters does not completely define the control

scheme. As the next and final step, one should choose the feedback control method. In

principle, we can use any of the methods described in the previous chapter. However,

given the assumptions made, there is a clear preference. Since we are looking to

eventually construct a general control scheme able to stabilize the model system

to a prescribed target trajectory with desired properties in the presence of noise of

finite amplitude and without requiring the complete knowledge of the system state,

we have to select between the linear-quadratic control and the worst case control.

Furthermore, since we chose the process noise as random and uncorrelated with the

state of the system, the linear-quadratic control should achieve the optimal results,

so we choose it over the more complicated worst case control.
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Before we proceed with the calculation of feedback, we need to define the weight

matrices. Unless there is a very compelling reason to distinguish between different

points of a periodic target trajectory, it usually does not make much sense to make

the weights time-dependent, so we assume that the weight matrices are constant

irrespectively of whether the target state is periodic or not. Furthermore, since the

model system (6.10) is translationally invariant, it is often natural to choose the

weight matrices as multiples of a unit matrix:

Q = qI, q ≥ 0,

R = rI, r ≥ 0. (6.21)

Since the weight matrices are symmetric and the minimization problem is invariant

with respect to rescaling the functional (5.40), (nx(nx + 1) + nu(nu + 1))/2− 1 inde-

pendent parameters are thus replaced with a single adjustable parameter, q/r > 0.

The remaining adjustable parameter can be chosen to satisfy a selected criterion, be

that the minimization of the noise amplification factor ν or the maximization of the

largest magnitude of noise σ̄w tolerated by the resulting control scheme.

Now that the control scheme is completely defined, we can turn to numerical

experiments and the analysis of their results. Following Hu and Qu [15] we use the

logistic map (6.14) to describe the local dynamics. Also, throughout the remainder of

this section we control the coupled map lattice by applying feedback at the boundaries,

which corresponds to setting

Ψi(x
t,wt,ut) = δi,1u

t
1 + δi,nxu

t
2 + wt

i . (6.22)

Numerical simulations show that the CML defined by equations (6.10) and (6.22) can

be stabilized using the linear-quadratic control method in a wide range of parameters

a and ε, as we expected. The results are demonstrated for an intermediate value of

coupling, ε = 0.33, and a = 4.0.

Consider the steady uniform target state (which we denoted as S1T1) with x̄ =

1−a−1 = 0.75. The local dynamics of the model system of length nx = 8 in the vicinity

of this state is characterized by three unstable and five stable normal modes. The
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Figure 6.2: Optimal feedback gain for the steady state S1T1: feedback gains K1j and K2j for the
two pinnings placed at the sides of the lattice (i1 = 1, i2 = 8) as functions of the lattice site j for
a = 4.0 and ε = 0.33.

solution of equations (5.36) and (5.37) for the feedback gain matrix K is presented

graphically in figure 6.4 for the choice of the weight matrices Q = I and R = I.

Naturally, the contribution Kmj∆x
t
j to the control perturbation ∆ut

m from the site j

far away from the pinning site im is larger: since the feedback is applied indirectly

through coupling to the neighbors, the perturbation introduced at the pinnings decays

with increasing distance from the pinning sites. As a result, feedback becomes very

sensitive to the changes in the state of the sites in the middle of the lattice.

One might argue that the lattice with just eight sites is too short to be an adequate

model for a typical extended dynamical system. However, the purpose of this section

is to illustrate the application of different feedback control techniques introduced

in the previous chapter to the problem of controlling the spatially extended system

modeled by a coupled map lattice. Here we describe how the control techniques can

be used under various conditions in the context of our particular model rather than

explore their limits of applicability, which is done later in section 6.5, where a scalable

generalization of the present control setup is introduced.

First, we stabilize the system in the absence of noise, setting σw = 0. Figure 6.4(a)

shows the state of the system as the evolution takes it along a trajectory which passes

through the neighborhood N (x̄) of the uniform target state, and subsequently as
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Figure 6.3: State feedback control of the steady state S1T1: (a) system state, (b) its deviation σt
x

from the target state and magnitude of control perturbations ut
1 and ut

2. Feedback is turned on at
t = 0.

control, turned on at time t = 0, drives the system towards the target state. One can

see that even though the dimensionality of the system is much larger than the number

of control parameters, it only takes about ten time steps for the observable deviations

from the uniform configuration to disappear. One can obtain a more quantitative

description of the convergence speed by looking at the standard deviation

σt
x =

[
1

nx

nx∑
i=1

|∆xt
i|2

]1/2

(6.23)

from the target state as a function of time, presented in figure 6.4(b) along with the

magnitude of control perturbations ∆ut
1 and ∆ut

2.

We repeat the procedure for the lattice of the same length and using the same

feedback gain, but now introducing random noise of finite amplitude σw = 10−5. The

state of the system before and after the control is turned on is presented in figure

6.4(a). Large fluctuations about the target state disappear after about ten iterations,

as in the noise-free case, although after that, instead of converging to the uniform

target state at a constant rate, the system settles into smaller amplitude fluctuation

driven by external noise, as evidenced by the standard deviation σt
x presented in figure
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Figure 6.4: State feedback control of the steady state S1T1 with noise: (a) system state, (b) its
deviation σt

x from the target state and magnitude of control perturbations ut
1 and ut

2. The amplitude
of noise is σw = 10−5. Feedback is turned on at t = 0.

6.4(b) along with the magnitude of control perturbations.

Adding even the smallest amount of noise provides a very good indicator of how

well a given method performs with respect to other control methods: the performance

is characterized by how well the noise is suppressed. When the noise is small com-

pared to the size δx of the basin of attraction N (x̄) of the target trajectory, such a

characteristic is provided by the noise amplification factor ν, which determines the

average deviation of the closed-loop system from the target trajectory in the presence

of noise of fixed amplitude. When the noise cannot be considered small, minimizing

the maximal strength of noise σ̄w that the control scheme can tolerate becomes a

much more important criterion than minimizing the noise amplification factor. In

general, σ̄w depends not only on ν, but also on δx which, in turn, depends on the

strength of feedback. For the CML (6.10), however, it was found numerically that

setting R = 0 to obtain the smallest ν usually yields the largest σ̄w, thus satisfying

both criteria.

We compare the noise amplification factor (5.45) for the linear-quadratic control

method, the multi-parameter generalization of the OGY method, and the dead-beat

control method using the lattice with nx = 16 sites. As expected, the linear-quadratic



114

0 0.25 0.5 0.75 1
102

103

104

105

106

107

108

109

1010

εεε

ννν

LQC

OGY

DBC

Figure 6.5: Noise amplification factor as a function of coupling calculated for the steady target state
S1T1 using linear-quadratic control (solid line), OGY control (dashed lined), and dead-beat control
(dotted line). We used Q = I and R = 0.

control performs considerably better (see figure 6.4) than the other two methods, espe-

cially for small coupling when the degeneracy is most significant. The linear-quadratic

control method is also capable of tolerating the noise of much larger amplitude. Using

the lattice with nx = 8 sites we found σ̄w ≈ 3× 10−3 for the linear-quadratic control

versus σ̄w ≈ 10−7 for the other two methods — a difference of more than few orders of

magnitude. Similar results were obtained for a number of target states besides S1T1,

which shows superior robustness properties of the linear-quadratic control, justifying

our choice of the control technique.

Time-periodic target states can be controlled equally successfully using the time-

dependent generalization of the linear-quadratic control technique described in section

5.3.3. Let us again take the lattice with nx = 8 sites and pick a period four nonuniform

(S8T4) trajectory, which is invariant with respect to reflections about sites i = 4 and

i = 8, as our target state. Since the temporal period of this target state is four, the

feedback gain matrix obtained by solving equations (5.53) and (5.48) is also periodic

with the same period. Numerical experiments again show that the control scheme

obtained is rather robust and can withstand noise of considerable amplitude. As seen

from figure 6.4, by applying feedback calculated with Q = I and R = 0 we managed

to stabilize the system despite the rather high level of noise, σw = 8× 10−3.
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Figure 6.6: State feedback control of the periodic state S8T4 with noise: (a) system state, (b) its
deviation σt

x from the target state and magnitude of control perturbations ut
1 and ut

2. The amplitude
of noise is σw = 8× 10−3. Feedback is turned on at t = 0.

Although the feedback gain (5.48) is by construction optimal for both deterministic

and stochastic systems, it can be further tuned by finding the weight matrices opti-

mizing the performance criteria selected in either case. For instance, in the stochastic

case it is usually more desirable to increase the tolerance of the control scheme to

noise. Hence, for each target state we can set Q = I and R = rI and find the maximal

noise strength σ̄w for various r, thus determining the optimal weights. This process

is illustrated using the target state S8T4. As one can see from figure 6.4, the value

of σ̄w varies over almost an order of magnitude, reaching the maximum of approxi-

mately 8 × 10−3 for the smallest value of r considered, which supports the general

observation that in our model σ̄w is maximized by minimizing the noise amplification

factor ν. Different target states, however, are sensitive to the choice of the relative

magnitude of Q and R to a different degree, e.g., for the steady uniform target state

S1T1 σ̄w ≈ 3× 10−3 is essentially independent of the choice of weight matrices.

Finally, we show how our model can be stabilized using output feedback control

when the state of the system cannot be determined directly. As we discussed in section

5.4, the state can be dynamically reconstructed using a sequence of measurements

of the output. During the observation one usually extracts information about an
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Figure 6.7: Maximal noise amplitude tolerated by state feedback control: σ̄w is plotted for the
periodic state S8T4 as a function of r, where R = rI. Matrix Q = I is kept constant.

extended system locally at a number of distinct spatial locations. This comes as no

surprise, since most sensors provide information of extremely local character. In the

context of our particular model, this implies that the state of each sensor depends

only on the state of the lattice in some small neighborhood of that sensor. Similarly

to the number of control parameters nu, the number of scalar output signals ny is

bounded from below for highly symmetric target states by the observability condition.

Placing sensors at the pinnings and assuming that the neighborhood only includes

the pinning site itself, we conclude that C = B†, so that the observability condition

is satisfied automatically and ny = nu. In particular, this arrangement of sensors

ensures that there are no unobservable normal modes.

We illustrate the application of output feedback control again using the lattice of

length nx = 8. The feedback and filter gains were calculated using equations (5.53),

(5.48) and (5.68), (5.70), respectively. We successfully stabilized a number of steady

and time-periodic states of the model (6.10) in the presence of both the process noise

and measurement errors (measurement errors were assumed to be random, indepen-

dent and uniformly distributed in the interval [−σv, σv], similar to the process noise).

The difference ∆x̃t between the actual and the reconstructed state of the system is

plotted in figure 6.4(a) for the target state S8T4 with moderate level of noise, while

figure 6.4(b) shows the deviation σt
x from the same target state and the estimation
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error

σt
x̃ =

[
1

nx

nx∑
i=1

|∆x̃t
i|2

]1/2

. (6.24)

6.5 Density of Pinnings

6.5.1 Lattice Partitioning

To facilitate practical implementation, the control algorithm presented above should

be easily extendable to systems of arbitrary size. However, even though it is theoreti-

cally possible to control the deterministic coupled map lattice of any length using just

two pinning sites, practical limitations require the introduction of additional pinning

sites as the length of the lattice grows. Since the total number of pinnings changes,

when the lattice becomes large, it makes more sense to talk about the minimal density

of pinnings, or the maximal number of lattice sites per pinning, that allows successful

control under given conditions.

Furthermore, since coupling between lattice sites is local, the feedback ut
m only

affects the dynamics of the sites i which are sufficiently close to the pinning site im.



118

Conversely, we expect the feedback ut
m to be essentially independent of the state of

the lattice sites i far away from the pinning im. Using this observation allows one to

simplify the construction of the control scheme substantially by explicitly defining the

neighborhood of each pinning im that contributes to, and is affected by, the feedback

ut
m. We thus naturally arrive at the idea of distributed control.

By arranging the pinnings regularly we ensure that the lattice is partitioned into a

number of identical subdomains of length nd ¿ nx, described by identical evolution

equations. To simplify the analysis we assume that each subdomain contains the

minimal number of pinning sites, i.e., two. Placing the pinnings at the boundaries of

subdomains allows one to choose boundary conditions for each of the subdomains at

will, so we assume that boundary conditions are periodic. This effectively decouples

adjacent subdomains, which can now be treated independently (one should under-

stand that this is only true for a one-dimensional lattice with one state variable per

site, and the generalization to more complicated cases could be highly nontrivial).

The general problem of controlling the lattice of arbitrary length nx is thus reduced

to the simpler problem of controlling the lattice of fixed length nd with two pinning

sites, which was studied in detail in the preceding sections.

Indeed, let the domain span the sites i1 through i2 = i1 + nd − 1 of the lattice.

Then arbitrary boundary conditions

xt
i1−1 = ψ1(x

t
i1
, · · · , xt

i2
),

xt
i2+1 = ψ2(x

t
i1
, · · · , xt

i2
) (6.25)

can be imposed by adjusting the feedback as follows:

∆ut
1 → ∆ut

1 + εf(ψ1(x
t
i1
, · · · , xt

i2
))− εf(xt

i1−1),

∆ut
2 → ∆ut

2 + εf(ψ2(x
t
i1
, · · · , xt

i2
))− εf(xt

i2+1), (6.26)

which only requires the knowledge about the state of the system inside the subdomain

and at two adjacent sites i1−1 and i2 +1. If the exact form of the evolution equation

(6.10) is not known, the linearization of the rule (6.26) can be used instead. The

nonlinear version, however, has a significant additional benefit associated with it:
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Figure 6.9: Stabilizing steady uniform state: a large lattice (nx = 128) is controlled by an array of
double pinning sites, placed at the boundaries of subdomains with length nd = 8. The state of the
system was plotted at each 104th step.

nonlinear decoupling of adjacent subdomains dramatically decreases the capture time

by decreasing the effective dimensionality of the system.

We demonstrate the effectiveness of nonlinear decoupling by stabilizing the target

state S1T1 of the CML defined by equations (6.10), (6.13) and (6.14) with a = 4.0

and ε = 0.33. The lattice with nx = 128 sites was divided into subdomains of

length nd = 8, each controlled by two pinning sites placed at the boundaries. The

results presented in figure 6.5.1 show the evolution of the system from the initial

condition chosen to be a collection of random numbers in the interval [0, 1]. The

average time to achieve control in each of the subdomains, tc, is seen to be of order

105 iterations even though the subdomains were chosen relatively small. In general,

tc grows exponentially with the pointwise dimension of the attractor, tc ∝ (δx)−np
x ,

and, since np
x ∝ nd for large nd, the time tc can become prohibitively large, imposing

restrictions on the largest size of the subdomain.

The major factor limiting our ability to locally control arbitrarily large systems

with local interactions, however, is noise. The strength of noise and the values of
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system parameters determine the maximal length n̄x of the lattice that can be con-

trolled with two pinnings placed at the boundaries, which subsequently defines the

minimal density of pinning sites ρ = 2/n̄x. It is interesting to note that, at least for

the target state S1T1, the length n̄x can be estimated analytically with a rather good

precision using the conditions of controllability and observability, highlighting their

fundamental role in the control problem.

6.5.2 State Feedback

First, assume that the state of the system can be determined directly at any time, so

that state feedback control can be used. In the deterministic case the controllability

condition determines whether there exists a control sequence ∆uti , · · · ,∆utf−1, bring-

ing an arbitrary initial state ∆xti to an arbitrary final state ∆xtf , where tf = ti +nx.

In the presence of noise and without assuming any functional relationship between

the state and the feedback we can write

∆xti+nx = (A)nx∆xti +
nx∑

k=1

(A)nx−kB∆uti+k−1 +
nx∑

k=1

(A)nx−kEwti+k−1. (6.27)

This equation is not exact, it is only an approximation of the exact nonlinear evolution

equation (6.10), valid when both ∆xt and ∆ut are sufficiently small for all times

t = ti, · · · , tf − 1, as discussed in section 5.3.1. The linearization (5.39) on which

equation (6.27) is based is valid for arbitrary ∆ut. However, since the perturbation

∆ut
m is defined as the change in xt

im due to the control action, its magnitude is limited

by nonlinearities to the same range δx as the local deviation ∆xt
i from the target state.

Therefore, the control sequence should satisfy both equation (6.27) and the restriction

|∆ut
m| < δx, m = 1, 2, t = ti, · · · , tf − 1. (6.28)

Taking ∆xti = ∆xtf = 0 (the initial and final states coincide with the target state)

equation (6.27) can be rewritten as

z = −
nx∑

k=1

(A)nx−kEwti+k−1 = 0 +
nx∑

k=1

2∑
m=1

(A)nx−kbm ∆uti+k−1
m , (6.29)
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which is formally equivalent to the problem of finding the feedback sequence bringing

the system from the initial state ∆xi = 0 to the final state ∆xf = z in nx steps in

the absence of noise.

Again we assume that the process noise wt is represented by a vector whose com-

ponents wt
i are independent random variables uniformly distributed in the interval

[−σw, σw]. Noise is amplified roughly by a factor of λ per iteration, where λ is the

largest eigenvalue (6.17) of the Jacobian (λ = α for ε ≤ 0.5 and λ = (1 − 4ε)α for

ε > 0.5). As a consequence, the left-hand side of equation (6.29) can also be repre-

sented as a vector with random components zi distributed in the interval [−βσw, βσw],

where

β =
nx−1∑
t=0

|λ|t ≈ |λ|nx

|λ| − 1
. (6.30)

It could be argued that for the control to suppress any sequence of random pertur-

bations wt, every term (A)nx−kbm ∆uti+k−1
m on the right-hand side of equation (6.29)

should be of the same order of magnitude as the “worst case” amplified noise z. The

vector bm ∆uti+k−1
m represents local perturbation δxt

im = ∆uti+k−1
m introduced at the

site im at time t = ti + k − 1, while the matrix (A)nx−k describes the propagation of

that perturbation throughout the lattice. According to the structure of the matrix

A, local perturbation at site im affects the dynamics of the remote site j only after

propagating a distance l = |im− j| in time ∆t = l, decaying (or being amplified) by a

factor of αε per iteration. Consequently, the state of site j at time tf will be affected

by control ∆ut
m applied only at times ti, · · · , ti +nx− l− 1. The perturbation applied

at t = ti + nx − l − 1 is amplified the least and, therefore, one obtains the following

order of magnitude relation

δx = O
(
(αε)−lβσw

)
. (6.31)

Due to the periodic boundary condition, 0 ≤ l ≤ nx/2. For weak coupling, ε < |α|−1,

the propagating perturbation decays exponentially in magnitude, so the strength of

feedback is ultimately determined by the largest distance the signal has to travel, and

we should take l = nx/2 in (6.31). On the contrary, for strong coupling, ε ≥ |α|−1, the

propagating perturbation is amplified and, therefore, suppressing local noise requires
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the strongest feedback, setting l = 0.

On the other hand, δx can be estimated by equating the magnitude of the linear

term with the magnitude of the next nonlinear term in the Taylor expansion of the

local map function:

f(x̄+ δx, a) = f(x̄, a) + κ(δx+ µ(δx)2 + · · ·). (6.32)

For instance, the logistic map (6.14) gives δx ∼ µ−1 = 2x̄ − 1 = 1 − 2a−1. As a

result, we obtain the following estimate on the size of the controllable domain for an

arbitrary coupled map lattice with the quadratic nonlinearity:

n̄(1)
x (σw) = − ln(µσw) + ln(ξ)

ln(ζ)
, (6.33)

which is rather similar to the estimates obtained by Auerbach [28] and Aranson et

al. [67] for the lattice with asymmetric coupling. Parameters ξ and ζ in (6.33) are

defined thus: ξ = (|λ| − 1)−1, while ζ = |λ||αε|−1/2 for ε < |α|−1 and ζ = |λ| for

ε ≥ |α|−1. We should note that the estimate obtained for |α| = 2 in [14] was derived

in the assumption of strong local instability, |α| À 1, and (6.33) reduces to it in the

limit µ = 1 and ξ = 1.

Another method for the calculation of n̄x(σw) was proposed by Egolf and Socolar

[68], who suggested to use the actual feedback gain matrix K to obtain more precise

results for a specific control scheme. As we have seen in section 5.3.2, when a linear

system is perturbed by the noise of amplitude σw, one can estimate the average

deviation from the target trajectory as σx = νσw, where ν is the noise amplification

factor defined by (5.45). Regarding the nonlinearity as the additional source of noise,

one can instead write

σx = ν(σ2
w + σ2

xx)
1/2, (6.34)

where σxx is the error resulting from ignoring the effect of nonlinear terms in equa-

tion (5.39). For a coupled map lattice with the quadratic nonlinearity one obtains

σxx = µσ2
x and thus

σ2
x = ν2(σ2

w + µ2σ4
x). (6.35)
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This is a quadratic equation in σ2
x which has solutions only when

ν ≤ ν̄(σw) = (2µσw)−1/2, (6.36)

thus determining the critical noise amplification factor. For ν > ν̄(σw) the effect of

nonlinear terms can no longer be ignored and the control scheme breaks down. In

principle, one can stop here and numerically evaluate the length of the system at which

ν = ν̄(σw), thus obtaining the required functional dependence n̄x(σw) = nx(ν̄(σw))

for a specific K.

However, making one more step allows one to easily extract the analytic depen-

dence on the strength of noise. It can be argued that for any K the noise amplification

factor depends exponentially on the length of the system

ν = χηnx , (6.37)

where both χ and η are functions of the system parameters α and ε and the feedback

gain matrix K. Substituting (6.36) into (6.37) yields the final result in the form

similar to equation (6.33):

n̄(2)
x (σw) = − ln(µσw) + ln(2χ2)

ln(η2)
. (6.38)

Two important conclusions can be drawn from this result. First of all, even though the

length n̄x does depend on a particular choice of the feedback gain, this dependence is

rather weak, because it is attenuated by the logarithmic function, so that the obtained

estimate is valid for any typical feedback gain that stabilizes the system. Second,

the dependence on the strength of noise is also logarithmic and weak; however, the

magnitude of σw is that crucial parameter that ultimately determines the scale for

the length n̄x and, consequently, the minimal density of pinning sites ρ.

The maximal length of the system that can actually be stabilized by the linear-

quadratic control method with two pinning sites placed at the boundaries can be

obtained numerically by choosing the target state as the initial condition and moni-

toring the evolution of the closed-loop system in the presence of process noise wt of

amplitude σw, applying feedback calculated using the formula (5.37) with Q = I and
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Figure 6.10: The largest length of the lattice which can be stabilized with two pinning sites using
state feedback control: theoretical estimates n̄

(1)
x (solid line) and n̄

(2)
x (triangles), and numerical

results (squares) obtained with the process noise of amplitude σw = 10−8 as functions of coupling ε
for a = 4.0.

R = 0. As seen from figure 6.5.2, this length is quite large for a moderate level of noise

and is rather close to the values where the controllability breaks down according to

(6.33). The agreement between the numerical results and theoretical estimates (6.33)

and (6.38) is not perfect, although it is surprisingly good taking into account the

order of magnitude arguments used in the derivations. The choice of the noise level

was motivated by the need to separate the effect of the deviations σxx introduced by

the nonlinearity from the precision of numerical calculations σn = O(10−16) in the

evaluation of the feedback gain. Since, according to (6.34), σw/σxx = O(1) when

linear control breaks down, one needs 1 À σw À σn, so σw = 10−8 was taken here

(as opposed to σw = 10−14 used in [14]).

As expected, the minimal density of pinning sites is reduced substantially by re-

placing equally spaced single pinnings with equally spaced paired pinnings. For the

uniform steady target state S1T1, a = 4.0 and ε = 0.4, for example, the estimate

(6.33) gives ρ2 = 2/nd = 1/11 for the noise level σw = 10−8 (the actual value of 1/12

is even lower as seen from figure 6.5.2). If single pinnings are used instead, equation

(6.19) demands ρ1 = 1/nd = 1/2 even in the absence of noise, which is much higher

than ρ2.
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6.5.3 Output Feedback

Finally, consider the output feedback control of the target state S1T1. Let us assume

that the state of the system cannot be determined directly. Instead it has to be

reconstructed using the measurements at the pinnings, i.e., using the time series of

the lattice variables xt
i1

and xt
i2
. As we noted in section 6.4, this setup dictates that

C = B† in (5.69). To avoid unnecessarily complicating the problem we also assume

that the measurements are perfect, vt = 0.

In order to estimate n̄x with these assumptions we will need to exploit both the

controllability and the observability conditions. First, the state of the system has to

be reconstructed using nx consecutive measurements of the variables at the pinning

sites. However, because of the nonzero process noise the reconstructed state will

deviate from the actual state. Arguments similar to the ones used in deriving (6.31)

allow one to estimate the order of magnitude of the reconstruction error at a lattice

site with distance l to the closest pinning:

δx̃l = O
(
(αε)−lβσw

)
. (6.39)

Since the reconstruction error δx̃l is substantially larger than the strength of noise

σw, the former has to be substituted for the latter in (6.31) yielding

δx = O
(
(αε)−2lβ2σw

)
. (6.40)

Eventually, we obtain the following estimate of the maximal size:

n̄(3)
x (σw) = − ln(µσw) + ln(ξ2)

2 ln(ζ)
≈ n̄

(1)
x (σw)

2
, (6.41)

i.e., one half of the size of the lattice that can be stabilized using state feedback. This

result can be understood intuitively: when output feedback is used, a signal in the

system has to travel twice the distance in twice the time, first from a remote lattice

site to the pinnings, carrying information about the state of the system, and then

back in the form of feedback. This is effectively equivalent to doubling the size of the

lattice, hence the factor of one half.
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The same result can be obtained using the noise amplification factor. Observing

that, according to our assumptions A† = A, R̂ = 0, and Q̂ = (σ2
w/3)EE†, we conclude

that the filter gain and the feedback gain calculated for R = 0 and Q = qEE† are

directly related1, K̂ = K†, as are the solutions of the respective Riccati equations,

S = P . Therefore, the evolution equation (5.61) for the reconstruction error reduces

to

∆x̃t+1 = (A−BK)†∆x̃t + Ewt. (6.42)

Comparing (6.42) with the evolution equation (5.42) for the closed-loop system, we

conclude that the noise amplification factor of the filter is equal to that of the con-

troller, ν̃ = ν. Since both the process noise and the deviation caused by nonlinear

terms are amplified first by the filtering and then by the feedback, (6.34) has to be

modified to read

σx = ν̃ν(σ2
w + σ2

xx)
1/2, (6.43)

with the subsequent change in the condition determining when the linear control

breaks down:

ν̄(σw) = (2µσw)−1/4. (6.44)

Substituting this result into (6.37) yields

n̄(4)
x (σw) = − ln(µσw) + ln(2χ4)

2 ln(η2)
≈ n̄

(3)
x (σw)

2
. (6.45)

We compare the theoretical predictions (6.41) and (6.45) with the actual numerical

results for the CML subjected to the noise of amplitude σw = 10−8 in figure 6.5.3.

The target state S1T1 is stabilized using output feedback control (5.70), where the

feedback gain K is calculated using (5.37) with Q = I and R = 0 and the filter gain

is set to K̂ = K†. Once again we conclude that, similarly to the state feedback case,

the numerical results are in very good agreement with the theoretical estimates based

on the assumption that the breakdown of linear control is caused by the interplay

between the stochasticity and the nonlinearity of the evolution equation (6.10).

A comment should be made regarding the placement of sensors on the lattice. We

1This is a general result: as long as A = A† and C = B†, taking K̂ = K† guarantees that the filter is stable even
if the feedback gain K is not optimal.
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Figure 6.11: The largest length of the lattice which can be stabilized with two pinning sites using
output feedback control: theoretical estimates n̄

(3)
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(4)
x (triangles) and numerical

results (squares) obtained with the process noise of amplitude σw = 10−8 as functions of coupling ε
for a = 4.0. The measurement errors were assumed to be negligible.

have already established that the pinning control is most sensitive to the state of the

system at sites furthest from the pinnings. It is, therefore, advantageous to place

the sensors as far from the actuators as possible. In particular, in case of control

at the boundaries the optimal location for the sensors is the middle of the lattice.

This turns out to be a rather general result which cannot be explained by either the

observability or the controllability condition alone, only by their interaction.
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Chapter 7 Conclusions

Reviewing the results obtained in this thesis we see that the problem of controlling

chaos in symmetric systems in general, and spatiotemporal chaos in extended sys-

tems in particular, can be split into three major parts: symmetry analysis, system

identification (if the model equations are not available a priori), and controller syn-

thesis. The first part consists of analyzing how the symmetry related degeneracies of

evolution operators affect the control algorithm. The results of this analysis are then

used in the second part to obtain symmetry preserving model equations describing

the local dynamics of the system in the vicinity of the target state. Finally, in the

third part the model equations and the structure of the controller determined in the

first part are used to find the optimal feedback driving the system towards the target

state.

The first and the most important conclusion of our theoretical analysis can be

summarized thus: if the system under consideration is symmetric, as are most of

extended chaotic systems, it cannot be considered generic with respect to conventional

chaos control techniques, and its symmetry properties should be understood prior

to constructing a control scheme, even if the symmetry is only approximate. The

failure to observe the restrictions imposed by the symmetry on the structure of the

measured output signal will usually prevent the experimental reconstruction of the

system dynamics. Similarly, an inappropriate choice of control parameters will result

in weak controllability and, as a result, extreme sensitivity to noise, or even worse,

complete loss of control.

From the practical point of view, the main result of the symmetry analysis is that

the minimal number of independent control parameters required for control, as well as

the minimal number of independent scalar observables required for the reconstruction

of local dynamics, can typically be determined without any knowledge of the evolu-

tion equations governing the dynamics of the system. One only needs to know the

symmetry properties, such as spatial and temporal periodicity, of the target state, and
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the structural symmetry of the dynamical equations, which in the case of extended

chaotic systems is often uniquely defined by the geometry of the underlying physical

space. One should, however, realize that this typical pattern does not apply to all

symmetric systems without exception. The dynamical equations might, in principle,

be symmetric with respect to transformations unrelated to “geometrical” symmetries,

such as rotational, reflectional, or translational invariance. Additional “nonphysical”

symmetries can also be introduced as a result of the linearization procedure.

A number of comments have to be made regarding accidental degeneracies. We

found that when accidental degeneracies are present, restrictions obtained using sym-

metry considerations alone provide only the necessary conditions for controllability.

In particular, one obtains a lower bound on the minimal number of control parame-

ters. Exact determination of that number in this case requires additional information

about the structure of the Jacobian matrix, which can be gathered using experimental

reconstruction. On the other hand, experimental reconstruction itself is only possible,

if there is an adequate number of independent scalar observables. This number, how-

ever, is similarly undetermined. In practice, though, one rarely has to worry about

such complications, since accidental degeneracies are not common and unlikely to be

a problem for most actual experimental systems. Besides, an estimate for the minimal

number of observables and control parameters can always be easily obtained using

combinatorial arguments. Also, one should be careful in equating the minimal num-

ber of observables or control parameters with the highest degeneracy of the Jacobian

matrix, especially if this degeneracy is at least partially accidental. It can be argued

that accidental degeneracies between eigenvalues from the same irreducible invariant

subspace typically will not increase the dimensionality of the respective eigenspace

and, therefore will not lead to additional degeneracy in the local dynamics.

We also established that it is not enough to find an adequate number of control

parameters (or observables). These control parameters (observables) have to satisfy

certain conditions. In particular, perturbation of the control parameters should com-

pletely break the dynamical symmetry. The more strict independence condition is

specific to each target trajectory and, on the one hand, requires the knowledge of the

system’s response to variation of different control parameters (which can be obtained
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experimentally, if necessary), but, on the other hand, allows one to choose the minimal

set of control parameters systematically, avoiding trial and error search. For example,

in case of extended dynamical systems with local feedback the independence condi-

tion usually imposes restrictions on the mutual arrangement of pinning sites, while

the number of pinning sites is determined by the number of control parameters.

The conventional approach to system identification has to be modified in the pres-

ence of symmetries. In particular, in order to preserve not only the topology of the

original attractor, but also the symmetry of the original dynamical equations, one

has to use a number of simultaneously measured observables, which have to be the

components of an equivariant vector function of the actual state of the system. The

restrictions on the output can be relaxed somewhat in the case of local reconstruction

in the vicinity of some target trajectory. However, even then a number of independent

observables should be used instead of just a single one, as long as the symmetry of the

target state is nontrivial, leading to the increase in the dimension of the embedding

space. Otherwise, the conventional approach carries over with minor modifications.

A number of more specific conclusions can be made concerning extended chaotic

systems. The analysis of the simplified model system containing the defining features

of a general spatially extended dynamical system suggests that the localized control

of spatiotemporal chaos, which assumes that the system is monitored and perturbed

at a number of distinct spatial locations (pinnings), is quite convenient not only from

the theoretical point of view (this approach significantly simplifies the analysis of the

interaction between the system and the controller), but also from the practical point

of view. Indeed, we have argued that in the experimental setting it is usually much

easier to both apply feedback and extract information about the system locally, which

is crucial for practical implementation of control methods based on this approach.

Besides, as we have learned from the study of the model system, localized control is

quite effective in stabilizing a variety of unstable periodic orbits. Equally important

from the practical standpoint, one can track target trajectories as system parameters

slowly change, or switch between different trajectories by changing feedback without

changing either the density or the location of pinnings.

We determined that in order to make the target state controllable, the pinning



131

sites should be arranged properly. Choosing this arrangement in accordance with the

underlying symmetries of the system affords a significant reduction of the complex-

ity with simultaneous increase in the flexibility of the control algorithm, allowing it

to control target states with arbitrary spatiotemporal properties, while at the same

time requiring a smaller density of pinnings per unit volume of the system. Generally

speaking, the pinning sites should be arranged such that there are no uncontrollable

normal modes. For instance, in case of systems with translational and reflectional

invariance, the pinnings should not be arranged in a periodic array. One particular ar-

rangement deserves special attention. We determined that, if the noise is sufficiently

weak, or the system size is sufficiently small, even highly symmetric spatially ex-

tended systems can be controlled by dynamically adjusting the boundary conditions.

This can be considered as a “nonintrusive” control that requires minimal modifica-

tion of the controlled system and can be implemented rather easily in a variety of

applications.

The density of pinning sites required to achieve control depends on many factors.

Perhaps surprisingly, although there is a minimal number of pinning sites, their mini-

mal density is not bounded from below — in the absence of noise an extended system

of arbitrary size can, in principle, be controlled using the number of pinning sites

equal to the minimal number of control parameters, which is determined by the sym-

metry properties alone. (In practice certain restrictions appear due to the fact that

the volume of the basin of attraction shrinks exponentially with increasing size of the

system.) However, when noise appears, the minimal density of pinning sites depends

on the strength of noise (as well as parameters of the system and the type of feedback

control method used). Generally, strongly chaotic and weakly coupled systems will

require a higher density of pinning sites than weakly chaotic and strongly coupled

systems. Conversely, the maximum level of noise tolerated by control depends on

the density (and mutual arrangement) of pinnings and increases with the density of

pinnings.

This brings us to the final ingredient of a general control algorithm applicable

to extended spatiotemporally chaotic systems — the feedback control method. As a

rule, practical considerations call for more than just stabilization of a target trajectory
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with desired properties. Additional and very significant benefits can be obtained by

maximizing the domain of attraction in the deterministic case or by minimizing the

noise amplification factor in the stochastic case. Both of these goals call for optimal

feedback control. In fact, the numerical results obtained indicate that compared with

conventional chaos control techniques, optimal control techniques are able to tolerate

higher levels of noise and have shorter transient periods when the system wanders

throughout the chaotic attractor before being captured by linear control in the vicinity

of the target trajectory. The difference in performance becomes especially significant

for large and weakly coupled extended chaotic systems. As a result, by using optimal

feedback control one can considerably reduce the density of pinnings, thus simplifying

the issue of practical implementation.

Summarizing, we can suggest the following sequence of steps in constructing a

control scheme for an experimental extended chaotic system. First the symmetry

properties of the system and the target state should be analyzed. The results of this

analysis should be used to determine the number and mutual arrangement of sensors

and actuators. The locations of the actuators should not necessarily coincide with

the locations of the sensors, as was assumed in the analysis of the model system. In

fact, it is usually undesirable to place the sensors at or close to the actuators. If the

symmetry is too low to determine the spatial structure of the controller completely,

additional information about the structure of the system Jacobian should be gathered

using trial and error experimental reconstruction. The time series measurement of the

sensors’ output should then be used for local reconstruction of the system dynamics

in the vicinity of the target state using the delay coordinate embedding. Finally, the

optimal feedback should be found based on the above information using either the

linear-quadratic or the worst case control technique.
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