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Roman O. Grigoriev1 and Andreas Handel

1.1
Introduction

Many physical, chemical, and biological systems of interest evolve in a non-
equilibrium environment. As these systems are driven further out of equi-
librium, they tend to display progressively more complicated dynamics, with
steady spatially uniform states replaced first by non-chaotic patterned states
and eventually by spatiotemporal chaos. This complexity is often undesirable
and considerable benefits could be derived by forcing the system towards a
less complex (but usually unstable) steady or time-periodic state. In response
to this challenge, control of spatiotemporal chaos has emerged in recent years
as a problem of increasing fundamental and applied value.

Control of turbulent boundary flows [17], mechanical vibrations, and noise
[37] is already an indispensable component of industrial design. Many other
significant technological applications, such as mixing [62], optical fiber man-
ufacture [70], coating [4, 39], wide aperture semiconductor lasers [56], inertial
confinement [67], combustion [81], and chemical reactions [10], could crucially
benefit from our ability to control (either suppress or enhance) the instabilities
leading to complex spatiotemporal dynamics. Considerable effort is currently
being invested in control of ventricular fibrillation [79] and epilepsy [23].

Besides these practical applications, the ability to control spatiotemporal
dynamics opens up a whole new direction in fundamental research by pro-
viding a unique capability to study otherwise inaccessible unstable states of
extended non-equilibrium systems. This capability can be used, for instance,
to experimentally construct complete bifurcation diagrams [49], study the dy-
namics and stability of isolated modes [22], detect and study unstable recur-
rent patterns [5], or reproducibly impose initial conditions [74].

Although the first attempts to control spatiotemporally complex dynam-
ics are centuries old, a scientific approach has not been employed until 1904,
when boundary layer theory was developed by Prandtl [68]. Subsequent at-
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tempts to suppress turbulence, from either empirical or linear stability per-
spective, lead to the creation of the field of flow control. More recently, control
of low-dimensional chaos in nonlinear systems, that originated with the work
of Ott, Grebogi, and Yorke [61] based on Floquet theory, has been extended
to spatiotemporal dynamics. These two, originally independent, tracks have
now merged, as recent studies (e.g., by Kawahara [47]) indicate.

The following classification [17] of various control approaches is helpful: By
passive control we will understand applying any time-independent perturba-
tion which tends to suppress the instability. Predetermined active control goes
one step further by generalizing the class of perturbations to include time-
dependence. We will refer to these two approaches as open-loop control. In
contrast, the closed-loop control is based on feedback: it aims to stabilize an un-
stable steady (or time-periodic) state of the system by applying perturbations
which depend on the deviation from that state.

Below, we will concentrate on closed-loop control as the most advanced
way to influence the dynamics. Although it is more difficult to design and im-
plement, closed-loop control offers a number of significant advantages over
the open-loop variety. First of all, closed-loop control can be systematically de-
signed by following a few rather general principles, while no systematic ways
of designing open-loop control exist. Closed-loop control is substantially more
energy-efficient because the magnitude of feedback depends on the deviation
from the target state: effectively the control is switched off in the absence of
disturbances, while the open-loop control is always on. Equally important
from the practical standpoint, closed-loop control is generally more flexible
and robust: it can be designed to handle noise and uncertainties in the mod-
eling and parameters. From the fundamental perspective, closed-loop con-
trol provides a unique capability to study unstable states inaccessible without
control by changing their stability properties, in contrast to open-loop control
which replaces the unstable states with different stable states.

Although the field of closed-loop control of complex systems is much young-
er than the field of flow control (its roots can be traced to work by Lions
on optimal control of systems governed by PDEs [54] in early 1970s) it too
has reached a certain level of maturity. This can be attested by a number of
successful experimental implementations in systems such as vibrating beams
[13], chemical reactions [65], patches of heart tissue [21], plasma drift waves
[24], and fluid convection in confined geometries [66, 76], all of which, in the
absence of control, display temporal instabilities, but have a rather regular spa-
tial structure. Most of these examples use the technique of single-input single-
output (SISO) control, which is based on reconstructing the state of the system
by making repetitive measurements of a single variable and then stabilizing
one of the originally unstable steady or time-periodic states using a sequence
of perturbations of a single parameter of that system.
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This approach aimed at low-dimensional (due to strong geometrical con-
finement) systems breaks down, partially or completely, when applied to weak-
ly confined systems, whose dynamics is characterized by spatial disorder and
is, therefore, high-dimensional. The dynamics of such systems is rather weakly
dependent on the boundary conditions and, as a result, recovers the sym-
metries inherited from the translational and rotational invariance of the un-
bounded physical space. These symmetries lead to degeneracies in the evo-
lution operators describing the dynamics near the target state, resulting in
the failure of single-parameter control. As previous studies (e.g., [26]) have
shown, these degeneracies require the use of multi-point, or distributed, mea-
surements (sensing) and feedback (actuation), i.e., multiple-input multiple-
output (MIMO) control.

1.1.1
Empirical control

Several empirical methods have been developed to achieve control of weakly
confined systems without relying on the knowledge on the evolution equa-
tions. Their complete description can be found elsewhere in this book. The
simplest one is a generalization of Pyragas’ time-delay autosynchronization
(TDAS) algorithm [69] and can be used to stabilize an unstable time-periodic
orbit (e.g., a plane wave) with temporal period τ by applying feedback pro-
portional to the difference in the state of the system at times t and t− τ. The
extended version of this algorithm (ETDAS) suggested by Bleich and Soco-
lar [8], constructs the feedback as a weighted difference between the states of
the system as times t, t − τ, t − 2τ, · · · . (E)TDAS was found to have a lim-
itation when applied to spatially extended system in more than one spatial
dimension, though: control fails for the target states with an odd number of
unstable eigenvalues [46,58], the origin of which can be traced to spatial sym-
metries [38]. The generalized version of ETDAS (GETDAS) [57] goes around
this limitation by replacing scalar weights with matrices. Yet, even GETDAS
fails if there are stationary modes in the uncontrolled system [80], as is the
case in weakly confined systems with continuous translational and/or rota-
tional symmetry, characterized by the existence of symmetry-related Gold-
stone modes with zero growth rates.

Other studies have shown the possibility to achieve control of unstable
steady or time-periodic patterns by applying feedback proportional to the in-
stantaneous local deviation of the system from the target state. This method is
sometimes referred to as (local) proportional control (LPC) [40] or, in the con-
text of fluid flows, opposition control [33]. Although this method is relatively
simple and, like ETDAS, does not require the knowledge of the dynamical
equations, it requires feedback to be applied to all degrees of freedom of the
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system (e.g., all components of the velocity vector at every point in space for
fluid flows [31]) to be successful – a requirement that is essentially impossi-
ble to satisfy in practice. If LPC is applied only to selected degrees of free-
dom (e.g, to one component of the velocity everywhere in space [30] or to all
components of the velocity along a boundary [11]) the spatiotemporal chaos
cannot be completely suppressed.

1.1.2
Model-based control

If the equations governing the dynamics of the system are known, one can
improve on these empirical control methods. In the model-based approach,
the description of the system is usually simplified by collapsing it along the
strongly confined spatial direction(s)2 (say, z) using either mode truncation
(e.g., as in the analysis of Rayleigh-Bénard convection (RBC) [41, 76] or wide
aperture lasers [6]) or an approximation based on a perturbation expansion
(e.g., as in the lubrication, or long-wave length, approximation for thin film
flows [27, 60]), producing a reduced order model depending only on the ex-
tended (weakly confined) directions (say, x and y). It is then assumed that
spatially distributed feedback is applied by perturbing the system at all points
(x, y) in the extended directions by an amount proportional to the deviation
of the system from the target state (either a uniform state or a plane wave) at
the same location (x, y). As a result, a system

∂tv = f[v, u], (1.1a)

u = kw, w = c · (v− v0), (1.1b)

is obtained, where f[·, ·] and v(x, y, t) are, respectively, the evolution operator
and the state of the open-loop system, u(x, y, t) is the feedback (i.e., the dis-
turbance applied to one of the system parameters), c is a constant vector de-
scribing the relation between the system state and the measurement w(x, y, t),
and the feedback gain k is the proportionality constant between the deviation
from the target state v0(x, y, t) and the feedback signal.

In the physical system the deviation can often be measured at one (or both)
of the boundaries, say z = 0 and z = lz (e.g., oxygen concentration on the
surface of platinum catalyst in CO oxidation [63]), in a plane z = z0 between
the boundaries (e.g., velocity for a turbulent shear flow [51] or temperature
for RBC [77]), or an integrated deviation for 0 < z < lz can be used (e.g.,

2) In non-equilibrium systems, confined directions usually correspond
to the direction of the flux driving the system out of equilibrium
(e.g, momentum transport in shear fluid flows, heat flux in convec-
tion, etc.), while there is no flux, on average, in the extended direc-
tions [12]. Of course, it is possible that, in large aspect ratio systems,
zero-mean-flux directions can effectively become confined as well.
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shadowgraphic amplitude for RBC [42]). Similarly, feedback can be applied
by changing the boundary conditions at one (or both) of the boundaries (e.g.,
heat flux through the boundary in RBC [42, 77]) or by applying an integrated
disturbance (e.g., volumetric heating of the fluid in Marangoni-Bénard con-
vection [74] or superimposition of the electromagnetic field with its filtered
and time-delayed version in a He-Ne laser [53]). Since the closed-loop sys-
tem is translationally invariant in the extended directions, the eigenfunctions
of the reduced order model are given by either Fourier modes (for spatially
uniform) or by Bloch-Floquet waves (for plane wave target states). Hence the
linearized evolution equations block-diagonalize in the Fourier space, produc-
ing an infinite set of ODEs (state-space representation)

˙̄v = Av̄ + bū,

ū = kc · v̄, (1.2)

labeled by the wave number q = (qx, qy), where v̄(q, t) = Fq(v − v0) and
ū(q, t) = Fqu are the Fourier transformed state and feedback variables,
A(q, t) = Fq(∂f/∂v|v0)F−1

q is the Jacobian of the open-loop system and the
vector b(q, t) = Fq(∂f/∂u|v0)F−1

q describes how the feedback affects differ-
ent degrees of freedom of the system. Finally, the feedback gain k is chosen to
simultaneously stabilize all Fourier modes.

Although this physically motivated approach often works well, it too has
limitations. For instance, a constant gain k stabilizing all Fourier modes might
not exist, as, e.g., the analysis of the complex Ginzburg-Landau equation
(CGLE) [7] and lubrication equations describing evaporating liquid films [27]
shows. An improved version of this approach developed by one of us (RG)
[27] and Bamieh et al. [3] uses the results of linear stability analysis to system-
atically design the feedback. The systematic approach shows that a stabilizing
feedback can only be found when A, b, and c satisfy certain restrictive condi-
tions. These conditions are often (but certainly not always) satisfied for sys-
tems described by only a few coupled scalar fields. For instance, thin liquid
films can be described by one variable (e.g., film height [60]), RBC requires
two variables (e.g., temperature and vertical velocity [77]), while single mode
wide-aperture laser models are three-dimensional (e.g., complex amplitude of
the electric field and carrier density [6]).

When a stabilizing feedback does exist, it often has to be wave number-
dependent (as well as time-dependent for time-periodic target states). Fur-
thermore, optimal (in the sense of time-averaged deviation of the system from
the target state) feedback [3, 27] is generically wave number-dependent and,
therefore, nonlocal in the real space,

u =
∫

dqF−1
q k(q)Fqw, (1.3)
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such that the feedback at a particular spatial location depends on the devia-
tion from the target state at other locations. Several other theoretical [52] and
experimental [43,55] studies of nonlinear optical systems have also found that
Fourier filtered feedback is required in order to stabilize unstable patterns.

The model-based approach becomes indispensable when A, b, and c do
not satisfy the restrictions alluded to above, which is the generic case. This
requires modifications to (1.1b) and (1.2) with the goal of reconstructing the
deviation v − v0 from the scalar measurement w (see e.g., [14] for details).
Specifically, (1.2) is replaced with

˙̄v = Av̄ + bū,
˙̂v = Av̂ + bū− k̂(w̄− c · v̂),

ū = k · v̂, (1.4)

where w̄(q, t) = Fqw, k̂ is the filter gain, and both it and the feedback gain k
become vectors. Respectively, the first equation in (1.1b) is replaced with u =
F−1

q ū. By subtracting the second equation in (1.4) from the first, one finds that
v̂ → v̄ provided A + k̂c† (or A† + ck̂†) is stable, while v̄ → 0 provided A + bk†

is stable. We find that mathematically the problem of finding k̂ given c is
equivalent to that of finding k given b. It is a standard control-theoretic result
that the feedback gain k and the filter gain k̂ can be found provided A and
b satisfy the controllability (or the weaker stabilizability) condition and A and
c satisfy the observability (or the weaker detectability) condition [14, 26]. This
duality between the feedback and sensing parts of the controller allows one
to solve both the problem of state reconstruction and the problem of feedback
control using the assumption that the complete knowledge about the state of
the system is available (i.e., replacing c with a unit matrix in (1.1b)). A review
by Kim [48] discusses the application of this approach to control of turbulent
boundary flows.

The model-based approach makes no assumptions regarding the number
of unstable directions have to be made and access to all degrees of freedom
(for sensing or actuation) is not required. This makes physical sense: for in-
stance, in convective systems temperature perturbations also control the ve-
locity, while in lasers the perturbations of the electric field also control the
polarization and the population inversion. However, the crucial step in the
analysis – block-diagonalization of the linearized evolution equations – hinges
on the implicit assumption of translational (or rotational) invariance, which
cannot always be justified.

For instance, the assumption that both sensing and feedback are spatially
continuous (in other words, independent sensing is done, or feedback ap-
plied, at every point in the space of extended directions) is usually unreal-
istic, although the development of micro-electro-mechanical systems (MEMS)
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could change that. So far, systems for which both sensing and actuation can
be done optically represent the only exception. For instance, all-optical ana-
log feedback loops have proved effective for control of pattern formation in
nonlinear optical systems [43,53,55,64], while the applicability of thermalized
optical perturbations for control of thin film flows has been demonstrated by
Semwogerere and Schatz [74] and Garnier et al. [22].

More typically, both sensing and feedback have to be implemented using an
array of discrete elements. Several theoretical studies of coupled ODEs [59],
CGLE [9, 45], and two-dimensional turbulence [31, 75] suggest that it is pos-
sible to achieve control using LPC applied via an array of spatially localized
sensors and actuators, but that array should be rather dense. The existing con-
vection experiments achieved partial stabilization of the flow by using a large
number of small heaters (15 in Ref. [41], 24 in Refs. [76] and [49]), but provided
little information on the relation between spatial resolution and the degree of
stabilization. This relation, especially in the limit of sparse sensor/actuator
arrays, is of fundamental importance from both physical and control theoretic
perspective. Several different conjectures have been made regarding the den-
sity of the sensor/actuator array necessary to achieve control. Some studies
suggest that the distance between the closest elements is determined by the
correlation length [9, 45], while others suggest that the number of elements
in the array should equal the number of unstable modes [1, 32]. Other stud-
ies [15, 25, 28] have shown that, for an appropriately chosen feedback, a much
smaller density (limited by noise) of sensors/actuators can be achieved.

In the following sections we will discuss the conditions affecting the den-
sity and structure of the sensor/actuator array and describe how a stabilizing
feedback gain can be computed. Although the generalization of our results to
time-periodic target states is, in principle, straightforward, we will limit our
discussion to steady states to make it more accessible. Furthermore, we will
initially assume that complete information about the system state is available
and then discuss how the results change if only partial information can be ob-
tained using an array of sensors. Finally, we will assume that the system has
only one extended direction (say, x) and is laterally bounded, 0 < x < lx (we
will drop the index of lx below).

1.2
Symmetry and the minimal number of sensors/actuators

If feedback is applied via spatially localized actuators, how many such actu-
ators, at a minimum, are needed to suppress chaos in favor of a particular
target state? As the theory developed in [26] shows, the answer to this ques-
tion depends on the symmetries of the system and the target state, but not on
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the system size or on how the feedback is computed. This is a fundamental
issue that has to be understood before moving on.

In a laterally bounded system the wave numbers will be discrete rather than
continuous, qx = · · · , q−2, q−1, q0, q1, q2, · · · . Defining the feedback signal ap-
plied by actuators m = 1, 2, · · · , M as u = (u1, u2, · · · , uM), we can write the
evolution equations describing our system as

˙̄vn = Anv̄n + Bnu, n = · · · ,−2,−1, 0, 1, 2, · · · , (1.5)

where B(q) = Fq(∂f/∂u|v0), Bn = B(qn), An = A(qn) and v̄n(t) = v̄(qn, t). If
we denote the number of scalar fields describing the state of the system (i.e.,
the dimensionality of v) as N, then An would be an N × N matrix and Bn
would be an N × M matrix.

Let βk be the eigenvalues of the full block-diagonal Jacobian of the system

Â = diag(· · · , A−2, A−1, A0, A1, A2, · · · ) (1.6)

and let µk be the degeneracy of eigenvalue βk. Further, let

Āk =




An1
. . .

Anµ


 , B̄k =




Bn1
...

Bnµ


 , (1.7)

where the indices run over the values of n for which βk is an eigenvalue of
An. It can be shown then [26], that the feedback u stabilizing the system (1.5)
exists, provided (i) the number M of columns of B (and hence of actuators) is
no less than the highest degeneracy of the unstable eigenvalues,

M ≥ max
Re(βk)>0

µk, (1.8)

and (ii) at least one of the columns of B̄k is non-orthogonal to the adjoint eigen-
vectors of Āk for all k with Re(βk) > 0.

The degeneracy is usually determined by the symmetries of the evolution
equation and once these symmetries are identified, the situation usually sim-
plifies considerably. Let us look at some examples. Consider the complex
Ginzburg-Landau equation with δ-localized feedback

∂tv = εv + (1 + ib)∂2
xv− (1 + ic)|v|2v + (1 + id)

M

∑
m=1

δ(x− xm)um (1.9)

and periodic boundary conditions on a domain of length l = 2π (such that
qn = n). Assuming um to be real, linearizing (1.9) about the steady state v0 = 0
and Fourier transforming, we obtain the evolution equations for the real and
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imaginary parts of v̄n = r̄n + is̄n:
(

˙̄rn
˙̄sn

)
= An

(
r̄n
s̄n

)
+ Bnu, An =

(
ε− n2 bn2

−bn2 ε− n2

)
,

Bn =
(

cos(nx1)− d sin(nx1) · · · cos(nxM)− d sin(nxM)
d cos(nx1) + sin(nx1) · · · d cos(nxM) + sin(nxM)

)
. (1.10)

The reflection symmetry of the evolution equation (1.9) and the target state
v0 = 0 has transpired in the degeneracy of the eigenvalues of the linearized
system, β±−n = β±n = ε − n2 ± ibn2. We find that µn = 2 for all n 6= 0 and,
consequently, at least two actuators are needed to stabilize the chosen target
state. This is a special case of the general result proved in [26]: the minimal
number of independent feedback signals should be no less than the dimen-
sionality of the largest irreducible representation of the isotropy subgroup Gv̄0

of the system, which is defined as a set of all transformations with respect to
which both the open-loop evolution equation (i.e., (1.9) with u = 0) and the
target state are invariant. In this particular case Gv̄0 = O(2) × U(1) (spatial
translations and reflection plus the global phase symmetry v → eiφv) and its
largest irreducible representation is two-dimensional.

The second lesson can be learned by considering part (ii) of the stabilizabil-
ity condition. Without loss of generality we can pick the origin of the coordi-
nate system such that x1 = 0, so that

Ān =
(

A−n 0
0 An

)
, B̄n =




1 cos(nx2) + d sin(nx2)
d d cos(nx2)− sin(nx2)
1 cos(nx2)− d sin(nx2)
d d cos(nx2) + sin(nx2)


 . (1.11)

It is easy to check that e† = (1, i,−1,−i) is an adjoint eigenvector of Ān and the
condition (ii) is not satisfied whenever e† B̄n = 0 (or x2 = π/n). In other words,
stabilizability is lost whenever an unstable eigenfunction of the system, e.g.,
vn = sin(nx), has nodes at the locations of both actuators.

Similar conclusions can be drawn for a laterally infinite system with non-
local coupling defined by an integral, as opposed to a differential, equation.
Consider, for instance, the following evolution equation:

∂tv(x, t) = εv(x, t) +
∫ ∞

−∞
e−

(x−x′)2

2σ2 v(x′, t)dx− v3(x, t) +
M

∑
m=1

δ(x− xm)um(t).

(1.12)
After linearization about the trivial steady state v0 = 0 and Fourier transfor-
mation (1.12) reduces to a set of ODEs

v̇q = βqvq +
M

∑
m=1

eiqxm um, (1.13)
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with doubly degenerate eigenvalues

β±q = ε +
√

2πσe−
σ2q2

2 . (1.14)

Consequently, at least a pair of actuators is needed, and the spacing should
satisfy condition (ii) with

Āq =
(

βq 0
0 βq

)
, B̄q =

(
1 e−iqx2

1 eiqx2

)
, (1.15)

which requires qx2 6= πn for all integer n and all q such that βq > 0. Defining
λmin to be the smallest unstable wave length, we can write the stabilizability
conditions as |x1 − x2| < λmin/2.

Summing up, we can formulate the following rule of thumb for control
of steady uniform states in translationally and reflectionally invariant one-
dimensional systems: At least a pair of actuators separated by less than half the
wavelength of every unstable mode is necessary to achieve stabilization. In higher
dimensions more actuators will be needed, as determined by the respective
symmetry group.

Introduction of mean flux in any of the lateral directions changes these re-
sults dramatically. For instance, adding a reflection symmetry-breaking term
(1 + ia)∂xv to the right hand side of (1.9) changes the eigenvalues to

β±n = ε− an− n2 ± i(bn2 − n), (1.16)

removing the reflection-related degeneracy for all n, β±−n 6= β±n . Since now all
µn = 1, just one actuator may be sufficient (in one dimension). This reduction
in the minimal number of actuators provides, at least to some extent, the ex-
planation for the observation that if either mean flux is introduced [18] or if
the actuators are not stationary, but move through the system (regularly [75]
or randomly [20]), fewer of them are needed to suppress chaos. Indeed, the
introduction of a term such as a · ∇v into the right hand side of the evolution
equation (1.1a) is equivalent to changing the reference frame to the one mov-
ing with velocity a, in which the actuators, previously stationary, move with
velocity −a.

We conclude this section with a few general remarks. The stricter controlla-
bility condition requires satisfaction of (i) and (ii) for all k, stable and unstable.
We should note, however, that spatially extended systems with a continuous
spatial variable cannot be made controllable as stable modes with arbitrarily
small wave lengths exist, so condition (ii) is impossible to satisfy. Second,
using the duality of feedback and sensing parts, we conclude that the same
conditions (i) and (ii) apply to an array of sensors.

Needless to say, one should not expect the results for the minimal number
of actuators (or sensors) to hold in practice for systems of arbitrary size. The
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main reason for this is that linear stability analysis only considers the dynam-
ics of infinitesimal disturbances, while real disturbances always have a finite
size. We will look at the effect of disturbances in the next sections.

1.3
Nonnormality and noise amplification

If the system can be made formally stabilizable, control can only fail as a re-
sult of failure of linear stability analysis when disturbances grow so large that
nonlinear terms become non-negligible. To determine the dynamics of distur-
bances, however, we do need to define how the feedback is computed.

Again, to illustrate the main idea we will restrict our attention to a narrower
class of spatially extended systems, following our earlier study [35]. Specif-
ically, we will consider scalar translationally and reflection symmetric ver-
sions of (1.1a) in one spatial dimension with periodic boundary conditions.
Examples of this class of systems include such model equations as the real
Ginzburg-Landau, Kuramoto-Sivashinsky, and Swift-Hohenberg equations.
These model equations describe the dynamics of generic, spatially extended
systems close to several common types of bifurcations [12] and thus are of
particular importance in the studies of spatiotemporal dynamics.

As in the previous section, we will assume that the feedback is applied
through an array of spatially localized actuators. Linearizing about a steady
uniform state we obtain the following equation for the deviation from the tar-
get state

∂tv(x, t) = Âv(x, t) +
M

∑
m=1

bm(x)um(t) (1.17)

where Â is a linear operator and bm(x) are the influence functions describing
the location and spatial extent of each of the M actuators. Assuming the state
of the system can be obtained either by direct measurements or via a state re-
construction procedure described in section 1.1.2 we can express the feedback
signals um(t) as linear functions of the deviation

um(t) =
∫ l

0
km(x)v(x, t)dx, (1.18)

where km(x) is the feedback gain that should be chosen such that the uni-
form state is stabilized. The non-locality of this feedback law is the price
one has to pay for the generality of this approach that will allow us to use
a very sparse array of actuators. In contrast, local proportional control (e.g.,
um(t) = kv(xm, t) with bm(x) = δ(x− xm)) generically breaks down as soon as
the distance between actuators exceeds λmin/2 (see, e.g., [19]).
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To simplify the problem of computing M feedback gains we can use the
symmetry of the problem by making the actuators identical (e.g., by setting
bm(x) = b0(x − xm)) and placing the controllers in a regular array, so the
closed-loop system will retain a discrete translational symmetry (subgroup
of continuous translational symmetry of the open-loop system). However,
placing the actuators in a periodic array will make the Fourier mode with the
period equal to twice the array spacing s = l/M uncontrollable and lead to
the loss of stabilizability as long as that mode is unstable. We thus find that in
a periodic array one should choose s < smax ≡ λmin/2, so that the number of
actuators scales with the system size, M ≥ 2l/λmin.

A significantly smaller number of actuators will be needed, if a periodic ar-
ray of pairs of actuators is used instead, with the spacing s1 in the pair smaller
than smax and the spacing s2 = 2l/M between the pairs potentially much
larger than smax. The resulting array will have a discrete translational sym-
metry (x → x + s2) and a reflection symmetry about the midpoint between
any neighboring actuators. These symmetries dictate the following choice of
influence functions:

bm(x) =





b0

(
x− (m− ∆) l

M

)
, m−odd,

b0

(
x− (m− 1 + ∆) l

M

)
, m−even,

(1.19)

where we have defined ∆ = s1/s2. For instance, four actuators would be
placed as two pairs, one pair at x = (1±∆)l/4 and the other at x = (3±∆)l/4.
To preserve the symmetries of the closed-loop system we also choose the gains
km(x) as translated and reflected versions of each other, mirroring the choice
(1.19) we have made for the influence functions, so that only a single unknown
weight function k0(x) needs to be determined (also see [3]).

Fourier transforming the linearized evolution equation (1.17) and the feed-
back law (1.18) we obtain the system

˙̄vn = βnv̄n +
M

∑
m=1

Bm
n

∞

∑
p=−∞

Kp
−sv̄p ≡ (Mv̄)n, (1.20)

where v̄n, Bm
n , and Km

n are the Fourier coefficients of v(x, t), bm(x), and km(x),
respectively, βn = β(qn) (with qn = 2πn/l) are the eigenvalues of the lin-
earized open-loop system, and M is the Jacobian of the closed-loop system.

At this point it is appropriate to mention that the choice of the influence
function b0(x), which is determined by the physical construction of the actua-
tors, plays an important role in the control problem. For instance, the Fourier
spectrum of b0(x) should contain all unstable modes; modes missing in the
spectrum will be uncontrollable. On the other hand, if the spectrum contains
stable modes as well, the feedback stabilizing the unstable modes of the open-
loop system can destabilize some of the stable modes. This problem is referred
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to as control spillover [32]. As a result, despite the block-diagonalization of
the open-loop system, the calculation of feedback has to include all modes
that appear in the spectrum of b0(x), both unstable and stable ones.

It turns out that the Fourier coefficients of k0(x) can be found analytically in
the limit of singularly localized influence functions, b0(x) = δ(x), as a function
of the eigenvalues β′n of the closed-loop system. This results in the so-called
pole placement control. The details can be found in [35]. Here we will men-
tion the main result: the largest Fourier coefficient, and with it the maximum
of k0(x), scales exponentially with the length of the system divided by the
number of controllers

kmax ∼ e
l

Ml0 , (1.21)

where l0 is a characteristic length which, to leading order in l, is given by

l0 = π

(∫ ∞

−∞
ln
|βmax − β′(q)|
|βmax − β(q)| dq

)−1

, βmax = max
n

βn (1.22)

(for large l the wave numbers qn are dense, so we can parameterize new eigen-
values using a functional form β′(qn) = β′n).

This result shows that although in principle it is possible to find a stabilizing
feedback for any system size l and number of actuators M, the price one pays
for making l large or M small is the exponential increase in the magnitude
of the feedback signal applied by the actuators. It is not difficult to imagine
the consequences of such a feedback: a small O(σ) initial disturbance would
generate an O(kmaxσ) perturbation applied by the nearby actuators resulting,
at least temporarily, in the amplification of that initial disturbance by roughly
a factor of kmax. Since the closed-loop system is linearly stable, all sufficiently
small disturbances will eventually decay, making this feedback-generated dis-
turbance amplification transient. Mathematically, transient growth of distur-
bances can be related to the nonnormality of the Jacobian M of the closed-loop
system and is characterized by the transient amplification factor

γ ≡ max
t,v̄(0)

‖v̄(t)‖2
‖v̄(0)‖2

= max
t

∥∥∥eMt
∥∥∥

2
≡

∥∥∥eMtmax
∥∥∥

2
, (1.23)

which measures the maximum amplitude of an evolved disturbance v̄(t) (or
v(x, t)) for all possible initial conditions v̄(0) (or v(x, 0)). The initial condition
producing the maximal amplification at time tmax is often called the optimal
disturbance v̄opt and is given by the right singular vector corresponding to
the largest singular value of eMtmax [16]. For normal operators γ = 1, but for
nonnormal ones it can be arbitrarily large. Several authors have introduced
quantities similar to (1.23) to characterize transient growth [16, 71–73]. We
should point out that the transient amplification factor is analogous to transfer
norms which arise in the input-output description commonly used in control
theoretic analyses, including those concerning transient growth [2, 44, 50].



16 1 Localized Control of Spatiotemporal Chaos

(a)

(b)
Fig. 1.1 Control of the Kuramoto-Sivashinsky equation (1.26) using
localized feedback applied at the four points marked with circles. (a)
Control succeeds for a system of size l = 55. Note the strong initial
transient localized around the actuators and preceding the asymptotic
decay. (b) Control fails for a system of larger size l = 60.

Under fairly general assumptions it can be shown [35] that transient ampli-
fication does indeed scale with kmax:

γ ∼ kmax

|β′max|
∝ e

l
Ml0 , β′max = max

n
β′n. (1.24)

In case the full information about the system state is unavailable, one has to
use an array of sensors to reconstruct it from the local measurements. The du-
ality of this problem to the feedback problem allows us to immediately make
a couple of conclusions. First, the array of sensors should be built according
to the same principles as the array of actuators to ensure that the system state
can be reconstructed. Second, the total transient amplification will be given by
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the product of those for each stage (sensing, feedback) [25, 34]. If the sensing
stage mirrors the feedback stage (same number and arrangement of sensors
and actuators and sensing gain equal to feedback gain), we obtain

γtotal = γ2 = e
2l

Ml0 . (1.25)

Summing up, we have found that regardless of how small the magnitude
σ of initial disturbances is, the transient growth in the feedback loop will
amplify them to an O(γσ) magnitude which, for sufficiently large spacing
s2 = 2l/M between controller pairs, will be large enough for the linear stabil-
ity analysis to break down and for control to fail. This is illustrated in Fig. 1.1
for the Kuramoto-Sivashinsky equation

∂tv = −∂2
xv− ∂4

xv− v∂xv. (1.26)

Exactly when the breakdown occurs depends on (i) the magnitude of noise
σ, (ii) the placement of actuators and the choice of feedback gain which affect
transient amplification factor γ, and (iii) the particular form of the nonlinear
terms which determines the limits of the validity of the linear approximation.
We address this last issue in the next section.

1.4
Nonlinearity and the critical noise level

The effect of nonlinear terms can be considered from different perspectives.
The simplest argument suggests that, as long as the evolution equations are
non-dimensionalized to get rid of very large or very small parameters, the
importance of nonlinear terms can be judged based simply on their order of
magnitude. We will limit our scope to the most common type of nonlinear-
ities found in spatiotemporal dynamics, those having the form of a power
of the disturbance, occasionally with a spatial derivative in the mix, (e.g.,
quadratic nonlinearities in the logistic coupled map lattice [15,28], Kuramoto-
Sivashinsky equation [1], Navier-Stokes equation [48,75] or Boussinesque equa-
tions [77], cubic nonlinearities in the CGLE [7] and Swift-Hohenberg equa-
tion [35], quartic nonlinearity in thin film equations [27, 60] and so on). An
upper bound for the breakdown of the linear control approach is immediately
obvious: If a disturbance σ is transiently amplified such that γσ = O(1), the
nonlinear terms become important and the linear approach becomes invalid.
This estimate gives the upper bound for the noise level

σmax ∼ γ−1. (1.27)

Numerical integration performed for a generalized (real) Ginzburg-Landau
equation with a custom nonlinear term f (v),

∂tv = v + ∂2
xv + f (v), (1.28)
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and with feedback applied at one of the boundaries,

v(0, t) = 0, v′(l, t) =
∫ l

0
k(x)v(x, t)dx, (1.29)

shows that for nonlinearities with an odd power, e.g., f (v) = v3 or v5, one does
indeed find the scaling (1.27) at large l [29]. For even powers, e.g., f (v) = v2

or v∂xv, one instead finds a different scaling law

σmax ∼ γα, α = − p
p− 1

. (1.30)

This scaling can also be understood using order of magnitude arguments
and employing the idea of bootstrapping originally introduced by Trefethen
et al. [78] in the context of shear flow (in)stability. The idea of the argument
is that the purely linear growth leading to the estimate (1.27) is preempted
by a positive-feedback loop involving transient amplification and nonlinear-
ity. The critical noise level in this case can be found by equating the order
of magnitude of the initial (primary) disturbance with the magnitude of the
nonlinear terms acting on the amplified disturbance, which act as a secondary
disturbance that is further transiently amplified, O(σ) = O((γσ)p). Solving
for σ one immediately obtains (1.30). The justification of the scaling law for
the model (1.28)-(1.29) with an arbitrary power p can be found in [29].

One could ask if the scaling exponents in (1.27) and (1.30) or even the power
law scaling itself obtained for a particular model equation are generic and
hence our understanding of the effect of nonlinear terms complete. Unfortu-
nately, the answer is negative on both counts. The situation is far more com-
plicated even in the framework of the simple model considered here. One can
see this by studying the limit of small, rather than large, system size, as was
done in [36]. In this limit all calculations can be done analytically.

Without repeating the details of the analysis we will summarize the results.
The system size l is chosen such that only one Fourier mode is unstable and
one mode is very weakly stable. Feedback is chosen to make the stable mode
weakly stable as well, so that the dynamics of the closed-loop system in the
Fourier space is characterized by two slow, nearly degenerate, modes and an
infinite number of fast (strongly) stable modes. Adiabatic elimination of the
fast modes reduces the dynamics to the subspace spanned by the two slow
modes. The analysis performed for the cubic and the quadratic nonlinearity
then shows that the basin of attraction of the target state is bounded by the
stable manifold of one (for quadratic) or two (for cubic nonlinearity) saddle-
type steady states that emerge in the vicinity of the target state as a result of
feedback (see Fig. 1.2). The shape and size of the stable manifold determine
the critical noise level. Computing the amplification factor γ one can find that
the power law scaling σmax ∼ γα is an exceptional case. More typically σmax
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Fig. 1.2 The phase portrait of the model (1.28) with the quadratic (a)
and the cubic (b) nonlinearity in the subspace parameterized by the
amplitudes a1 and a2 of the two slow modes. The filled and the open
black dots show the nodes and saddles, respectively. The blue and
red curves show the stable and unstable manifolds, respectively, of the
saddles. The black curves are the typical trajectories.

is not uniquely determined by γ, but also depends on the time tmax at which
the maximal transient amplification is achieved.

The relation between σmax and γ provides the last piece of the puzzle, relat-
ing the environmental noise, the symmetry of the system, the density of the
sensor/actuator array, and the choice of the closed-loop eigenvalues through
equations such as (1.22), (1.24), and (1.30).

1.5
Conclusions

The field of feedback control of nonlinear spatially extended systems has grown
too large in the past ten or so years to give credit to all researchers who have
contributed to its development. In this chapter, we discussed some of the re-
cent results, concentrating mostly on localized feedback control. >From the
discussion presented in these pages it should be clear that our understanding
has reached a level of maturity necessary to address real problems of interest.

On the other hand, many problems remain unresolved. For instance, the
feedback control of spatially and temporally periodic states has received much
less attention than control of uniform steady states, with numerical studies
overwhelming analytical investigations. The nonlinear stability of closed-loop
systems is another area where progress has been limited, with the majority of
studies concentrating on low-dimensional models rather than true spatiotem-
poral dynamics. Another fundamental problem awaiting solution is the prob-
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lem of “targeting”, as it is referred to in the context of low-dimensional sys-
tems, which becomes progressively more challenging as the dimensionality of
the system increases.
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