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1  Control of Spatially Extended
Chaotic Systems

R. O. Grigoriev

1.1 Introduction

In the present chapter we consider a class of phenomena such as turbulence [1],
plasma [2] and combustion [3] instabilities, cardiac arrhythmia [4], and brain
epilepsy [5], which manifest themselves as an irregular chaotic behavior occurring
in spatially extended nonlinear systems. Learning to control this irregular behavior
is very attractive due to a large number of potential applications. Some practically
important systems displaying spatiotemporal chaos are continuous, such as chemi-
cal reactors [6] or multi-mode lasers [7], some are discrete: neural networks [8] and
power grids are only a few examples.

Unfortunately, most high-dimensional systems, those just mentioned included,
remain notoriously difficult to control and little progress has been made so far
in the implementation of existing control techniques [9, 10] due to a number of
practical limitations. Although spatially extended homogeneous systems could be
treated as a special case of high-dimensional chaotic systems [11, 12, 13], some of the
practical issues that arise in the control problem are quite specific and are probably
best handled by taking into account the spatiotemporal structure of the system and
the controlled state in general, and their symmetry properties in particular [14].

In what follows we attempt to develop a general control algorithm for spa-
tiotemporally chaotic systems using the linear-quadratic control (LQC) approach,
which has become one of the cornerstones of modern control theory [15]. It is not
accidental that we choose it over many variations [12, 13, 16] of the OGY con-
trol technique [17]. The idea and methodology of LQC is rooted in the theory of
stochastic processes familiar to physicists and mathematicians alike. Besides, LQC
alone provides a framework for the systematic and consistent treatment of both
the steady and time-periodic control problem with or without noise, using full or
partial information about the system state.
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To make the general discussion more specific we select a model system which,
on the one hand, has the dynamics and the spatiotemporal structure characteristic
of extended spatiotemporally chaotic systems in general, and, on the other hand is
simple enough to analyze and compute. Since spatially extended systems typically
show rotational and translational symmetries, we require the model system to be
symmetric as well. In order to facilitate the analysis we also require the model to be
finite-dimensional, which puts the system on a spatial lattice. Furthermore, since
the analysis of continuous- and discrete-time systems is very similar, we choose
to discretize time as well. It can be argued that the results obtained after this
reduction are still applicable to extended systems, continuous or discrete in space
as well as time.

In general, the dynamics of the model system at time ¢ depends deterministically
on its present state, which we denote x*, and on the values of system parameters u.
However, the state of any finite-dimensional approximation cannot fully represent
the state of the actual infinite-dimensional system. The evolution of the state x*
should, therefore, also depend on the unmodeled dynamics of unaccounted degrees
of freedom, which might include unknown interaction with the environment. Con-
sequently, the evolution equation should include both deterministic and stochastic
components. The effect of the latter is usually rather small and can be treated as
random noise wt, often called the process noise:

x* = F(x!, wi,u). (1.1.1)

Since interactions in extended physical systems often have a rather short range,
if we associate one degree of freedom z¢ with each site i of the spatial lattice, we can
neglect the dependence of the dynamics of a variable z! on the variables a:§ associ-
ated with all lattice sites j, except the few nearest neighbors of the site i. (We do
not consider systems with long range interactions here to avoid unnecessarily com-
plicating the discussion, although they can be treated equally successfully using
the formalism outlined below.) For simplicity the lattice can be chosen as one-
dimensional, and then our reduced model is naturally represented by a stochastic
generalization of the deterministic coupled map lattice (CML) with nearest neigh-
bor diffusive coupling [18]:

2 = ef(al_y,a) + (1 - 20 f(ah,a) + ef(alyy,0) + Li(x',w?),  (1.12)

where index ¢ = 1,2,---,n, labels the lattice sites, and the last term (we assume
L;(x,0) = 0 for every i and x) represents the net effect of stochastic perturbations
at site i. Imposing the periodic boundary condition, z%,,, = z}, emulates the
translational (or rotational for, e.g., a Taylor Couette system) invariance. We take
u = (a,€), and assume that both a and € are the same throughout the lattice.
The local map f(z,a) can be chosen as an arbitrary (nonlinear) function with
parameter a, which typically represents the process of generation of chaotic fluctu-
ations by the local dynamics of the system, while diffusive coupling typically plays
the opposite role of dissipating local fluctuations. Therefore, the parameters a and
€ specify the degree of instability and the strength of dissipation in the system,
respectively. For the purpose of control, however, details of the local map are not
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important. The only aspect of the control problem affected by any particular choice
is the set of existing unstable periodic trajectories.

Our ultimate goal is to construct a linear control scheme able to stabilize any
steady or time-periodic state of the CML (1.1.2) of arbitrary length n, in the pres-
ence of nonzero noise and assuming that complete information about the state of
the system is unavailable and has to be extracted from the noisy time series mea-
surement of a limited number of scalar observables. Furthermore, we would like the
control scheme to provide optimal performance with or without noise and be practi-
cally realizable. The major ingredients of such a control scheme are expected to be
system-independent and, hence, applicable to extended spatiotemporally chaotic
systems in general.

The rest of the chapter is organized as follows. We start in section 1.2 with
finding the appropriate control parameters. Section 1.3 is devoted to control of
steady target states in the absence of noise. The results are generalized to noisy
systems in section 1.4 and then to time-periodic target states in section 1.5. The
modifications necessary when full information about the state of the system is
unavailable are discussed in section 1.6. In section 1.7 we determine the number of
independent control parameters necessary to control the noisy system of arbitrary
length. Finally, section 1.8 summarizes the major results.

1.2 Control Parameters

1.2.1 Conditions for Control

Before we proceed with the analysis of the general problem of controlling arbitrary
time-periodic target states of our noisy model (1.1.2) based on partial measure-
ments of the state, we study the simplest case of linear steady state control in the
absence of noise and assuming the full knowledge of the state of the system. The
solution for the general case is then obtained as a sequence of rather straightfor-
ward generalizations. The first problem that we face here is that there is no natural
choice of control parameters in the problem. Besides, as we will see shortly, not
every control parameter is suitable.

In order to determine the restrictions imposed by the structure of the system
on the control parameters we need to linearize the evolution equation (1.1.2) about
the selected target state

x: x=F(x,0,0). (1.2.1)

Denoting Ax? = x* — % the deviation from the target trajectory (1.2.1) and Au? =
u? — i the perturbation of the parameter vector, one obtains for small Ax? and
Au?

Ax™! = AAx' + BAUY, (1.2.2)

where the matrix A = DxF(X, 0, @) represents the Jacobian of the system and B =
D,F(x,0, 1) is the control matrix, reflecting the linear response to the variation of
parameters, both evaluated at the target state X. Specifically, we have A = M N,
where

M;; = (1 —2€)6;,; + €(di -1 + 0i j+1) (1.2.3)
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is the constant coupling matrix (with ¢; j+1 extended to comply with periodic
boundary condition), and
Nij = 0. f(2i,a)d; 5 (1.2.4)

is the state-dependent stretching matrix.

The dynamics of the CML (1.1.2) can be made stable in the vicinity of the
target state X by applying appropriate perturbations Aut, if the matrices A and B
satisfy the stabilizability condition [15], i.e., when there exists a linear synchronous
feedback

Aut = —KAx!, (1.2.5)

where K is the feedback gain matrix, such that all eigenvalues of the matrix A’ =
A — BK are stable (have magnitude smaller than one, |A;| < 1, Vk). Indeed,
plugging feedback (1.2.5) into Eq. (1.2.2) one obtains the linearized evolution
equation for the closed-loop system

Axt*t! = (A - BK)Ax!, (1.2.6)

with Ax = 0 becoming the stable fixed point of the map (1.2.6).

In practice, however, imposing the more stringent controllability condition on
the matrices A and B often produces better results. The system (1.2.2), or the pair
of matrices (A, B), is called controllable if, for any initial state Ax% = Ax;, times
ty —t; > ny, and final state Axy, there exists a sequence of control perturbations
Auti -+ Au’#~! such that the solution of Eq. (1.2.2) satisfies Ax's = Ax;. The
controllability condition is satisfied whenever

rank[B AB --- (A)™"'B]=n, (1.2.7)

and automatically ensures stabilizability.

There is a number of reasons to choose the controllability condition over the
stabilizability condition. The most important of those is the fact that the latter
usually sensitively depends on the equilibrium values of system parameters (in our
case a and €), while the former does not. This is especially important if the same
control setup is to be used for different values of parameters, or the target trajectory
is to be tracked as the values of parameters slowly change. Besides, it is much easier
to test a system for controllability using Eq. (1.2.7) than for stabilizability — the
latter essentially requires finding the feedback (1.2.5) which might be a daunting
problem in itself.

1.2.2 Symmetry, Locality and Pinning Control

Careful analysis of the controllability condition shows [14] that if the system is sym-
metric, certain symmetry-imposed restrictions on the choice of control parameters
should be satisfied in order to achieve control. In fact, our model is by construc-
tion highly symmetric. The symmetry is that of the spatial lattice: the evolution
equation (1.1.2) is invariant with respect to translations by an integer number of
sites and with respect to reflections about any site (or midplane between any adja-
cent sites), which map the lattice back onto itself without destroying the adjacency
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relationship. The respective symmetry group for the lattice with n, sites and the
periodic boundary condition is G = C,, .-

Without repeating the symmetry analysis conducted in [14], we mention two
major results which are especially important for us. First of all, irrespectively of
the length of the lattice n, it is impossible to control every target state of the CML
(1.1.2) using a single control parameter. However, an arbitrary target state can
be controlled using two (or more) independent control parameters. The minimal
number of control parameters depends on the symmetry properties of the target
state, and the higher the symmetry is, the stricter requirements are imposed on
the control scheme. Since we are looking to construct a general control scheme
independent of the details of each particular target state, we assume that at least
two control parameters should be available.

Second, it is impossible to control symmetric target states using global system
parameters, such as a and €. As a consequence, feedback has to be applied locally.
On the other hand, practical considerations would suggest that it is much easier to
perturb the system locally at a number of distinct spatial locations, e.g., applying
local fields, local pressure gradients, injecting chemical reactants, etc. This type of
feedback represents interaction with the control plant considered to be a part of the
environment, and cannot be adequately described using only the internal system
parameters like those characterizing the rate of growth of local chaotic fluctuations
and the strength of spatial dissipation. Instead, it is most naturally described by
generalizing the term L;(x%,w') in Eq. (1.1.2) to include the interaction with the
control plant, so that

$§+1 = Cf(xii&—la a) + (1 - 26)f($fa a) + 6f($§+1, a) + Li(xta wt7 ut)a (128)

where now vector u? describes the strength of interaction with the control plant.
The equilibrium value 1 can be selected arbitrarily, so we will assume @ = 0 below.
Without noise and control the last term in Eq. (1.2.8) vanishes, so one should
have L(x,0,0) = 0. Consequently, the linearization about the target state X again
yields Eq. (1.2.2), but now with B = D,L(%,0,0).

For simplicity we further assume that the interaction between the system and
the control plant is limited to only a few lattices sites 4,,, which we call pinnings
following Gang and Zhilin [9]:

L.
OLi(x,w,0) _ (1.2.9)
6Uj
for all x, w and @ # 4, m = 1,2,--- ,n,. Then, without loss of generality, the

control matrix B can be chosen as a matrix with dimensions n, X n,:
Ny
Bij =Y 6imbiin, (1.2.10)
m=1

such that Auf, describes the strength of the control perturbation applied at the
lattice site ¢ = 4,,. The number of pinnings (equal to the number of control
parameters) can be, in principle, chosen arbitrarily in the range 7i, < 1, < ng,
where n,, = 2 as we established above.
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Abb. 1.1: Periodic array of single pinning sites: minimal coupling € as a function of
parameter a. The dots represent the numerical results from Fig. 2 of Ref. [9], with e
rescaled by a factor of two to make it compatible with our definition.

1.2.3 Periodic Array of pinnings

Symmetric target states are arguably the most practically interesting and impor-
tant of all, so these will be the focus of the discussion that follows. It is no accident
that by far the most common target state, a spatially uniform time-invariant state
T =---=1Z,, =TI,is the state with the highest symmetry, and, as a consequence,
the most difficult state to control as well. On the other hand, symmetry usually
significantly simplifies the analysis of system dynamics, and the neighborhood of
the uniform target state benefits most from this simplification. All of this makes
it the perfect target state to test the general results on. Since the steady uniform
state is period one in both space and time, we will often use the shorthand notation
S1T1 for it.

Naively it seems that the most natural choice is to place the pinnings in a
periodic array, such that the distance between all n,, pinnings is constant, i,,+; —
im = nag, Ym. However, it can be shown [9] that with this setup the uniform
target state could only be stabilized with a rather dense array of pinnings, and
that the distance ng sensitively depends on the values of system parameters a and
€. Figure 1.1 shows the minimal coupling € for which the stabilization was achieved
numerically as a function of a for several values of ng for the logistic local map

f(z,a) =ax(l — x) (1.2.11)

with the fixed point Z = 1 —a~!. In particular, in the physically interesting interval
of parameters 3.57 < a < 4.0 where the independent logistic maps are chaotic,
control fails unless ng < 3. It is interesting to note, that the distance between
periodically placed pinnings can be increased significantly if the symmetry of the
system is lower, such as when the parity symmetry is broken [19].

One can easily verify that the matrix (1.2.10) calculated for a periodic array
of pinning sites does not satisfy the controllability condition. Since the uniform
state is invariant with respect to both translations and reflections of the lattice,
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the eigenfunctions of the Jacobian
A=0,f(Z,a)M (1.2.12)

coincide with eigenfunctions of the operators of translation and reflection, which
are well known to be given by Fourier modes g*:

gj- = cos(jki + ¢;). (1.2.13)

Here ¢; are arbitrary phase shifts, and k; are the wavevectors defined thus: k; = 0,
k; = kiy1 = mifn, for i = 2,4,6,---, and, for ny-even, k,, = w. Fourier modes
with the same wavevectors k define invariant subspaces of the Jacobian, L* C R"=.

Let us denote b; the ith column of the matrix B. According to the analysis
conducted in [14], the controllability condition is only satisfied when the projections
of the vectors b;, i = 1,- - -,n,, span every invariant subspace L*. The pinnings are
placed with period ng4, so

(g' - by,) = cos((iy + (m — Dng)k; + ¢;) =0 (1.2.14)

for every m, whenever ¢; = i1k; + /2 and k; = w/ng,2w/ng,37/ng,---. As
a consequence, only a one-dimensional subspace of L*: will be spanned, while
dim(L*) = 2, 0 < k < 7. In other words, feedback through the periodic array
of pinnings does not affect the modes (1.2.13) whose nodes happen to lie at the
pinnings, i.e. modes with periods 27/k; equal to 2ng4, 2n4/2, 2n4/3, etc, provided
those are integer. Such modes are called uncontrollable.

The control succeeds only when all uncontrollable modes are stable, i.e., when
the weaker stabilizability condition is satisfied. This, however, imposes excessive
restrictions on the density of pinnings p = n,/n,, again due to the spatial peri-
odicity of the array. The condition for stabilizability can be obtained from the
spectrum of eigenvalues of the Jacobian matrix (1.2.12):

v = a(l — 2¢(1 — cos(k;)), (1.2.15)

where a = 8, f(Z,a) = 2 — a. Specifically, we need

(a—2) [1 — 2 (1 — cos (Z—Z))] ‘ <1 (1.2.16)

for all j = 1,---,n, — 2, such that ng/j is integer. Using this criterion one can
obtain the relation between the minimal coupling, the distance between pinnings
ng, and parameter a of the local chaotic map for a stabilizable system. For instance,
j =1 yields

a—3

2(a — 2) <1 — cos (nid)) '

The curves defined by Eq. (1.2.17) are plotted in Fig. 1.1 together with the
numerical results of Gang and Zhilin [9] and are seen to be in excellent agreement.
Alternatively Eq. (1.2.17) can be used to find the maximal value of nq as a function

€ =

(1.2.17)
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of a and € for the target state S1T1. Similar restrictions on the minimal density
of pinnings can be obtained for target states of arbitrary spatial and temporal
periodicity (e.g., S2T1 and S1T2 [20]).

As it was suggested in [21], one can get rid of all uncontrollable modes placing
pinning sites differently. This will enable us to control the system anywhere in the
parameter space at the same time using a smaller number of pinnings, simplifying
the control setup. Let us take the minimal number, n, = 2. In fact, two indepen-
dent control parameters are enough to guarantee the controllability of any target
state of the CML (1.2.8), irrespectively of the state’s symmetry properties. In the
absence of noise this translates into being able to control arbitrary steady or time
periodic states of the coupled map lattice with an arbitrary (but finite) length, track
target states as the system parameters change and so on, which ensures extreme
flexibility of the control scheme.

The controllability condition for the matrices (1.2.12) and (1.2.10) imposes cer-
tain restrictions on the mutual arrangement of the pinnings i; and is: the length
of the lattice n, should not be a multiple of the distance between pinnings |is —i1],
otherwise the mode with the period 2]i2 — i1| becomes uncontrollable. One par-
ticular arrangement, however, is especially interesting: applying feedback through
the pinnings placed at the “beginning” i; = 1 and the “end” i = n; of the lattice
is equivalent to controlling a spatially uniform system of finite length adjusting the
boundary conditions.

1.3 Steady State Control

The next step in the algorithm is to determine the feedback Au’ that would ac-
tually stabilize the target state X. At first we assume that complete information
about the state of the system is available, i.e., the state vector x! can be directly
determined at any time step t. The feedback obtained using this assumption is
usually called state feedback. Although a large assortment of linear state feedback
control techniques is available (see, for example, review by Lindner and Ditto [22]),
most of them are single-parameter. Those that employ multi-parameter control
[9, 12, 16] are poorly suited to deal with stochastic dynamical systems and cannot
be generalized to handle the output feedback control problem, which arises when
complete information about the state of the controlled system is unavailable.

Instead we use linear-quadratic control theory [15], which, as we will see below,
is perfectly suitable to deal with the above problems in a consistent manner. An-
other significant advantage of the proposed approach is the possibility to tune the
feedback to obtain the best performance for a specific system. The performance
of a control scheme is not a very well defined concept, so we will explicitly discuss
what is implied in each particular case.

When the nonlinear dynamical system is completely deterministic, say

x!T = F(x!, u), (1.3.1)
any stabilizing linear feedback

u' =1u- K[x' - x] (1.3.2)
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will eventually (and usually rather fast) bring the system arbitrarily close to the
target state X, provided the system is in the neighborhood N (X) of the target state
when the control is turned on. The neighborhood N (X) can be defined as the basin
of attraction of the steady state X of the nonlinear closed-loop system

x't! = F(x',a - K[x' - x]). (1.3.3)

The major difference between linear control algorithms is, therefore, in the size and
shape of the basin of attraction.

We assume that the dynamics of the system is chaotic, i.e., the system evolves
ergodically on a chaotic attractor A with a fractal structure, so that the system
visits every neighborhood of any steady or periodic state embedded into the at-
tractor as time goes on. Therefore, a natural (and often the only possible) way to
enforce linear control for a target state x € A is to wait, with the control turned
off, until the systems gets in the neighborhood N (%) of the target state and then
turn the control on. However, it is difficult to check if the condition x € N (X) is
satisfied, since the shape of the basin of attraction is usually very irregular.

In practice one instead checks for x € P(X), where P(X) C N (X) is a regularly
shaped neighborhood of X, which best approximates N'(x). The linear size 6z of
P(x) is extremely important, especially for high-dimensional systems like the one
we study here, because it determines the probability for the system to visit this
neighborhood, which scales as (62)7, where D is the local pointwise dimension of
the attractor, and thus defines the average time ¢. one has to wait to turn the
control on (also called the capture time). Therefore, both the size and the shape of
the neighborhood N (X) are of ultimate importance if the linear control algorithm
is to be practically effective.

The size of V(%) crucially depends on the assumptions made during the deriva-
tion of the linear control law. In particular, the linear approximation (1.2.2) is valid
only when both the deviation Ax? from the target state and the perturbation Au’
of the control parameters are sufficiently small, so that the combined state-plus-
parameter vector belongs to a neighborhood M(x,4) C R™ x R™ of the point
(x,1) inside of which nonlinear corrections are negligible. Choosing the feedback
gain K produces the constraint (1.3.2) projecting the set M(x,u) onto the state
space R™=, giving a first-order approximation

NY(x) = {Vx | (x,u— K [x — x]) € M(x,1)}. (1.3.4)
of the basin of attraction A (X) (one has to ensure that Eq. (1.2.2) is valid for
all consecutive steps as well, i.e., X + (4 — BK){(x — %) e ND (%), t = 1,2,---).
As a result, the feedback gain K usually has to be chosen such that the control
perturbation Au is minimized in order to maximize the size of N (%). Such
feedback can be found as an optimal solution, which minimizes the functional

V(Ax®) =) [Hy(AxY) + H.(Au")], (1.3.5)
=0
with the constraint (1.2.2) for every initial deviation Ax°. We introduced the
following notations here:

H,(Ax) = Ax'QAx,
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H.(Au) = Au'RAu, (1.3.6)

where 1 denotes the matrix transpose, and @ and R are the feedback parameters,
which could be chosen as arbitrary positive semidefinite symmetric matrices in
order to tune the control scheme by “weighting” different components of the state
and control vectors. However, since the system (1.2.8) is translationally invariant,
it is often natural to choose the weight matrices as multiples of a unit matrix:

Q=ql, ¢20,
R=rI, r>0, (1.3.7)

so that a single adjustable parameter, ¢/r > 0, remains instead of n2 + n? matrix
elements.

Although the dynamics of the system is in general non-Hamiltonian, it is inter-
esting to note the following analogy with mechanical description of Hamiltonian
systems: H¢(Ax) and H.(Au) can be interpreted as the Hamiltonian function of
the linearized system and the energy of its interaction with the control plant, so
that the functional V (Ax) represents the discrete-time action.

Using variational calculus it can be trivially shown that the minimal value of the
action (1.3.5) is reached for Au! = —K Ax? and is quadratic in the initial deviation,
V(Ax) = Ax'PAx, where P is the solution of the discrete-time algebraic Riccati
equation

P=Q+A'PA— A'PB(R+ B'PB)™'B'PA, (1.3.8)

which essentially is the discrete-time version of the Hamilton-Jacobi equation, and
the feedback gain K is given by:

K =(R+B'PB) !B'PA. (1.3.9)

It can be shown [15] that, if R is positive definite, @ = DD and the pairs (A, B)
and (A", DY) are controllable, there exists a unique positive definite solution P to
Eq. (1.3.8), and the closed loop system (1.2.6) with feedback gain (1.3.9) is stable.
Formally, the derivation of the Riccati equation is only valid for R # 0. However,
since the limit

P = lim P(R) (1.3.10)
R—0

is usually well defined, the Riccati equation can be used to find the optimal feedback
for R = 0 as well. Although it is generally impossible to find the solution of
the Riccati equation analytically, extensive software exists for solving nonlinear
matrix equations of this type numerically. The easiest way to find the solution P
numerically is by direct iteration of Eq. (1.3.8).

Numerical simulations show that the CML defined by Eqgs. (1.2.8) and (1.2.11)
can be stabilized by the linear control (1.2.5) with feedback gain (1.3.9) in a wide
range of parameters a and €, as we expected. For a = 4.0 and € = 0.33 the steady
uniform state of the lattice with length n, = 8 has three unstable and five stable
eigenmodes. We use two pinning sites, located at the “boundaries”, ¢; = 1 and
19 = 8, to control the system. This corresponds to

Li(x", wh ut) = 6; 1ul + §; gub. (1.3.11)
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Abb. 1.2: Optimal feedback gain for the steady state S1T1: feedback gains K1; and Ka;
for the two pinnings placed at the sides of the lattice (i1 = 1,42 = 8) as functions of the
lattice site j for a = 4.0 and € = 0.33.

The solution for K is presented graphically in Fig. 1.2 for the choice Q = I,
R = I. Naturally, the contribution ijij- from the site j far away from the
pinning site i, is larger: since the feedback is applied indirectly through coupling to
the neighbors, the perturbation introduced at the pinnings decays with increasing
distance from the pinning sites.

Fig. 1.3(a) shows the state of the system as the evolution takes it along a
trajectory which passes through the neighborhood N(x) of the uniform target
state, and subsequently as control, turned on at time ¢ = 0, drives the system
towards the target state. One can see that even though the dimensionality of
the system is much larger than the number of control parameters, it only takes
about ten time steps for the observable deviations from the uniform configuration
to disappear. One can obtain a more quantitative description of the convergence
speed by looking at the standard deviation

1 ne 1/2
ot = l"_ > |Aa:§|2] (1.3.12)
T =1

from the uniform target state with # = 1 —a~! = 0.75 as a function of time,
presented in Fig. 1.3(b) along with the magnitude of control perturbations Au}
and Aub.

1.4 Control in the Presence of Noise

When the external noise is not negligible, w! # 0, the control problem has to be
considerably reformulated. First of all, feedback still has to be chosen such that
the closed-loop system is stable. However, the system will never converge exactly
to the target state, since noise will continuously drive it away. Therefore, now the
objective of control is to keep the system as close as possible to the target state for
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Abb. 1.3: State feedback control of the steady state S1T1: (a) system state, (b) its
deviation ¢! from the target state and magnitude of control perturbations u} and wj.
Feedback is turned on at ¢ = 0.

arbitrary magnitude of noise. Second, the system becomes stochastic and has to be
described probabilistically instead of deterministically. In particular, Eq. (1.2.2) is
replaced with

Ax*t = AAx' + BAu' + Ew', (1.4.1)

where we defined £ = Dy L(%, 0, 0).

Similarly to the deterministic case, linearization (1.4.1) has to be valid in order
for linear control to succeed. Consequently, the range of permissible deviations Ax?
from the target trajectory is again maximized by minimizing the control perturba-
tion Au?, which brings us back to the functional (1.3.5). A few changes should be
made, however, in keeping with the probabilistic description of the problem. To
make the value of the functional (1.3.5) independent of noise, we average it over
all possible noise signals w%, w', - --. In addition, we replace the infinite sum with

the infinite time average to ensure convergence:

V = < lim T Z —+—H (Au )] | Ax? = sz-> . (1.4.2)

T—o0

Suppose, the noise is described by a stationary zero-mean random process w,
which is d-correlated in time, such that!
(wew!) = 2y, (1.4.3)

where = is the correlation matrix of the process. Then the minimum of the func-
tional (1.4.2) is again reached for Au’ = —KAx’, but now it is quadratic in noise

1We choose to lower the time index where appropriate for notational convenience.
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[15], V = Tr(PEZE"), and is independent of the initial displacement Ax;. The
matrix P is again calculated as the solution of the Riccati equation (1.3.8), and
the feedback gain K is given by the same expression (1.3.9) as in the noise-free
case. This result is rather remarkable. It tells us that the feedback gain, calculated
in the assumption of completely deterministic dynamics is, in fact, optimal in the
stochastic case as well.

In the presence of nonvanishing noise and with the control turned on, the system
will oscillate about the target state. The statistical measure of the amplitude of
this oscillation is given by the state correlation matrix & = (AxtAx:tr ), which can
be easily found analytically, provided the process noise is not correlated with the
system state, (Axtw}; } = 0. Indeed, the closed-loop system with feedback gain K
is described by the dynamical equation

Ax**! = (A — BK)Ax! + Ew'. (1.4.4)
Multiplying Eq. (1.4.4) by its transpose and taking the average yields
® = (A - BK)®(A — BK)! + EZET, (1.4.5)

and since the matrix A — BK is stable, the solution in the form of the convergent
series is obtained:

$ = i(A — BK)"EZE'(A — BK)™. (1.4.6)

n=0

We note that @ is a linear function of =, so that the average deviation from the
target state is linearly proportional to the strength of noise. As a result, the ratio
of the two is an invariant quantity dependent only on the choice of feedback gain
K. Tt is called the noise amplification factor and is defined thus:

Clearly, the smaller v is — the better the control setup can suppress noise. Exami-
nation of Eq. (1.4.2) with Q@ = I and R = 0 shows that V = Tr(PyEZE") = Tr(®y).
As a result, the minimal value of the noise amplification factor
- /2
Te(P,EEEH]!
=|— 1.4.
v [ Ti(3) (1.48)

is achieved for the optimal feedback gain K = K calculated using Eqs. (1.3.8)
and (1.3.9).

We repeat the numerical experiment of the previous section retaining the same
values of system parameters and using the same feedback, but from now on applying
uncorrelated random perturbations to each site of the lattice, which corresponds
to

L,'(Xt, Wt, llt) = (5i,1u’i + 61"31115 + wf, (149)
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Abb. 1.4: State feedback control of the steady state S1T1 with noise: (a) system state,
(b) its deviation ¢ from the target state and magnitude of control perturbations u} and
wt. The amplitude of noise is o, = 107°. Feedback is turned on at t = 0.

and, consequently, E = I. Furthermore, we choose w! as independent random

variables uniformly distributed in the interval [—oy,04], so that = = (02 /3)1.
The state of the system before and after the control is turned on is presented
in Fig. 1.4(a) for the noise amplitude o,, = 107°. Large oscillations about the
target state disappear after about ten iterations, as in the noise-free case, although
after that, instead of converging to the uniform target state at a constant rate,
the system settles into smaller amplitude oscillations driven by external noise, as
evidenced by the standard deviation of presented in Fig. 1.4(b) along with the
magnitude of control perturbations.

When the noise cannot be considered small, minimizing the maximal strength
of noise 7, that the control scheme can tolerate becomes a much more important
criterion than minimizing the noise amplification factor v. In general, 7,, depends
not only on v, but also on the size of the basin of attraction A/ (X) which, in turn,
depends on the strength of feedback. For the CML (1.2.8), however, it was found
numerically that setting R = 0 to obtain the smallest v usually yields the largest
0w, thus satisfying both criteria.

We also found that the optimal control method outlined above is considerably
more robust than the control methods based on the deterministic approach, such
as the conventional multiparameter control algorithm proposed by Barreto and
Grebogi [16]. For comparison we calculated the maximal amplitude of noise toler-
ated by each of the methods for the target state SIT1 of the lattice with n, = 8
sites, a = 4.0 and € = 0.33. We obtained G, ~ 3 x 10~2 for the former method
versus o, ~ 1077 for the latter, a difference of more than few orders of magnitude.
Similar results were obtained for a number of other target states.
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1.5 Control of Periodic Orbits

So far we only discussed the time-invariant control problem which is obtained when
the target state is steady, i.e., has time period one. If the target state is periodic
with period 7 > 1, the analysis does not change conceptually. However, a number
of technical modifications of the algorithm have to be made in order to solve the
problem using the formalism outlined in previous sections. Let us denote the target
state X!, where due to the periodicity x!*™ = x!. Linearizing the evolution equation
(1.2.8) about x* yields

AxtH = A'Ax! 4+ BtAut + Elw?, (1.5.1)

where the Jacobian A* = M N?, the control matrix B¢ = Dyh(x?,0,0), and the
matrix B! = Dyh(x%,0,0) all become time-varying and periodic in the index t.
The stretching matrix N* above is defined by generalizing (1.2.4):

N} = 0. f(Z,a)b; ;. (1.5.2)

Similarly to the noisy time-invariant case we find the optimal feedback by min-
imizing the functional (1.4.2) with the weights @ and R which can, in principle,
be chosen time-periodic, thus acquiring the time index as well. The minimum is
again reached for Au’! = —K?!Ax?, where the feedback gain now also becomes
time-periodic:

Ky = (Ry+ B/ P,y1By) ' B} P, Ay (1.5.3)
P? denotes the time-periodic solution of the system of 7 coupled Riccati equations
P,=Qi+ AP, 1A, — Al Py 1 Bi(R, + B Piy1By) "Bl Py Ay, (1.5.4)

which can be formally reduced to a single Riccati equation of larger dimensionality
using the following ansatz.
Let us introduce the mn, x 7n, cyclic-shift block matrix

Z=|. . . .|, (1.5.5)
0 - I 0

consisting of n, x n, zero and unit blocks (we set Z = I if 7 = 1), and form
block-diagonal time-invariant matrices A, B, E, @ and R from the sequences of
time-periodic matrices A?, BY, Et, Q' and R?, respectively, according to the rule

rAl ... 07
A=+ . . (1.5.6)
0 --- AT]

Then the solution of the system of equations (1.5.4) is obtained by finding the
block-diagonal solution
TPl ... 07
P={: " 1. (1.5.7)
0o ... pPr
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Abb. 1.5: Maximal noise amplitude tolerated by state feedback control: &, is plotted for
the periodic state S8T4 as a function of r, where R = rI. Matrix @ = I is kept constant.

of the Riccati equation
P=Q+A'Z'PZA—- A'Z'PZB(R+ B' ZtPZB) !B ZtPZA. (1.5.8)

Thus, from the control point of view, the time-periodic linear system (1.5.1) is
effectively equivalent to the time-invariant linear system

AX"™! = ZAAX' + ZBAU' + ZEW'. (1.5.9)

The feedback gain (1.5.3) is by construction optimal for both deterministic and
stochastic systems. The weight matrices can be further tuned according to the
performance criterion selected in either case. For instance, in the stochastic case
it usually more desirable to increase the tolerance of the control scheme to noise.
Hence, for each target state we can set () = I and R = rI and find the maximal
noise strength &,, for various r, thus determining the optimal weights.

Let us again take a = 4.0, € = 0.33 and n, = 8. For these values of parameters
the coupled map lattice defined by Eqs. (1.2.8) and (1.4.9) has a multitude of
unstable periodic trajectories. We pick a period four nonuniform (S8T4) trajectory,
which is invariant with respect to reflections about sites ¢+ = 4 and ¢ = &, as our
target state. The control scheme obtained is rather robust and can withstand
noise of considerable amplitude o,,. As one can see from Fig. 1.5 the value of G,
varies over almost an order of magnitude, reaching the maximum of approximately
8 x 1073 for smallest r, i.e. 7, is maximized by minimizing the noise amplification
factor v. Different target states, however, are sensitive to the choice of the relative
magnitude of @) and R to a different degree, e.g., for the steady uniform target
state G, ~ 3 x 1072 is essentially independent of the choice of weight matrices.

In order to achieve the best robustness properties we calculate the feedback gain
(1.5.3) using r = 0. Since the target state S8T4 has period four, the feedback gain
matrix obtained is also periodic with the same period. The state of the system, its
deviation from the target state and the magnitude of applied control are presented
in Fig. 1.6 for the largest amplitude of noise tolerated.
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Abb. 1.6: State feedback control of the periodic state S8T4 with noise: (a) system state,
(b) its deviation ¢ from the target state and magnitude of control perturbations u} and
ut. The amplitude of noise is o, = 8 x 1073, Feedback is turned on at ¢ = 0.

1.6 State Reconstruction

If direct determination of the system state is inconvenient, impractical, or just
impossible — the situation often encountered in real physical systems — a mod-
ification of the LQC method outlined in the previous sections can be used. In
addition to the control structure that employs feedback we need to introduce an-
other construction, usually called the filter, that would monitor, collect and process
the available information about the system with the purpose of reconstructing its
internal state with the best accuracy possible. Since the errors introduced by the
filter become amplified by control, it is equally as important to have an optimal
filter as it is to have optimal control. Optimal filtering techniques derived for
the reconstruction problem [15] have much in common with the optimal control
techniques. As a consequence, similar results often apply.

We are interested in reconstructing the system state only in the vicinity of
the target state x!, where the dynamics of the system is described with adequate
precision by the linearized evolution equation (1.5.1). Assume that a single (or
sometimes several) scalar output(s) y! of the system can be measured. In gen-
eral, the measurements are imperfect, with the deviation from the perfect values
described by the measurement errors v':

y' = G(x',vh). (1.6.1)

For simplicity let us also assume that target state is time-invariant. Linearizing
the output (1.6.1) in the vicinity of the target state and introducing the notation
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Ayt = G(x!,vt) — G(%,0) one obtains:
Ayt = CAx' + Dv?, (1.6.2)

where C = D4xG(%,0) and D = D,G(x,0).

In general, the problem of dynamical state reconstruction can be cast in a
number of different ways. Here we pursue the one which is most easily treated in
the framework of optimal control. Our goal is to use the available information about
the system, i.e., the time series of control and output signals, to construct a vector
A%, which we call the state estimate, that would approximate the actual state
Ax?. First of all, similarly to the dynamics of the actual state, the dynamics of the
state estimate at time ¢ should depend deterministically on the present value of the
state estimate A%x?, the control perturbation Au? and the output Ay?. Consistent
with our linear approximation we obtain the general dynamical equation of the
form

AR = AA%t + BAu! + KAy?, (1.6.3)

where A, B and K are some as yet undefined matrices. Next, notice that in
the absence of noise and measurement errors, if the state estimate and the actual
state coincide at time tg, they should coincide at all later times ¢t > to as well,
and, therefore, Eq. (1.6.3) should coincide with Eq. (1.2.2) upon substituting Eq.
(1.6.2) with vt = 0 for arbitrary Au? and Ax? = Ax":

Ax! = (A + KC)Ax' + BAut. (1.6.4)

This requires A = A — KC and B = B, so that Eq. (1.6.3) yields the dynamical
equation )
AR = AA%Y + BAu' + K(Ay' — CA%Y), (1.6.5)

where K is called the filter gain matrix. Finally, we need AX' to be a good estimate
of the actual state, i.e., the difference Ax! = Ax? — A%? between the actual state
and its estimate should be small even when finite noise or measurement errors are
present. Subtracting Eq. (1.6.5) from Eq. (1.4.1) and substituting Eq. (1.6.2) we
obtain

AR = (A — KO)AR! + wt, (1.6.6)

where w! = Ew’ — KDv' denotes the sum of all stochastic terms in Eq. (1.6.6).
Assuming the measurement errors are random, unbiased, d-correlated in time,

(vivl) = O 6, (1.6.7)

and uncorrelated with the process noise, (wtvI,) = 0, we conclude that w! is a
stationary zero-mean random process with correlation

(%w)) = (KRK' + Q) du, (1.6.8)

where we introduced the shorthand notations R = DOD' and Q = EEE".
Observe that Eq. (1.6.6) has the same form as Eq. (1.4.4) for the closed-loop
system. It turns out [15] that, if the assumptions made above hold, the stochastic
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time-invariant optimal state reconstruction problem defined by Eqgs. (1.6.2), (1.6.5)
is formally equivalent to the deterministic time-invariant optimal control problem
defined by Eq. (1.2.2), with the following correspondence between parameters:
Ao AL BoCh Qe Q,Reo R Po Sand K & Ki.

In order to guarantee the existence of a positive definite solution S to the
respective Riccati equation the pair of matrices (Af, C) should be controllable.
This condition is equivalent to the dual condition of observability for the matrix
pair (A,C) and ensures that the state of the system can be reconstructed given
the measurement of the output. More formally, the dynamical system defined by
Egs. (1.2.2) and (1.6.2), or the pair (4, C), is said to be observable if for any times
ty —t; > n, the initial state Axti = Ax; can be determined from the measurement
of control perturbation Au’ and output Ay® in the interval ¢t € [t;,t].

The generalization to periodic target states is rather trivial and can be accom-
plished using the procedure discussed in the previous section. Assuming the period
of the target state is 7 > 1, we construct the constant matrices 4, B, C, @, R,
Q and R from the respective time-periodic matrices according to the rule (1.5.6).
Putting all the pieces together, one finally concludes that the time-periodic output
feedback control problem with additive noise

Axttl = A'Ax? + BtAu! + Elwt,
Ayt = C'Ax'+ D, (1.6.9)

requires the feedback Au?, calculated according to the equations

AT = A'AR? 4+ BAu! + Kt(Ay? — CTA%RY),
Aut = K!A%. (1.6.10)

The optimal feedback gain K* is found using equations (1.5.3) and (1.5.8), while
the optimal filter gain K is determined by

Kt = AtSt_lc;r(Rt + CtSt_log)_l, (1611)

where S! through S™ are the blocks found on the diagonal of the block-diagonal
solution S of the Riccati equation

S=Q+AzZSZI At — AzSZI\CY(R+ CzSZzict)tczSZ AL (1.6.12)

In spatially extended systems it is usually much more convenient to extract
information about the system locally at a number of distinct spatial locations.
Indeed, most sensors provide information of extremely local character. For the
coupled map lattice (1.2.8) this implies that the state of each sensor depends only
on the state of the lattice in some small neighborhood of that sensor. Similarly
to the number of control parameters n,, the number of scalar output signals n,
is bounded from below for highly symmetric target states by the observability
condition, which is a natural consequence of the above mentioned duality. Placing
sensors at the pinnings and assuming that the neighborhood only includes the
pinning site itself, we conclude that C' = Bt, so that the observability condition is
satisfied automatically and ny, = n,.
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Abb. 1.7: Output feedback control of the periodic state S8T4 with noise and imperfect
measurements: (a) difference A%’ between the actual and the estimated system state, (b)
deviation o, from the target state and the reconstruction error ot. The amplitudes of
the process noise and measurement errors are o, = 107% and o, = 107°. Feedback and

filtering are turned on simultaneously at ¢ = 0.

In the case of output feedback control one cannot measure the distance to the
target trajectory directly because the actual state of the system is not available.
However, if the system is sufficiently close to the point x® at time ¢, the difference
y! — G(x*,0) should be small. Verifying this condition at a succession of times
usually ensures that the system indeed closely follows the trajectory xto,xto+1 ...
The state estimate AX’ can be reset to zero when the system is far from the
target state. Filtering is turned on simultaneously with feedback when the system
approaches one of the points %, ¢y = 1, - - -, 7 of the target trajectory. We illustrate
this algorithm using the same target state, system parameters and location of
pinnings as in the previous section. The difference Ax? between the actual and the
estimated state of the system is plotted in Fig. 1.7(a), and Fig. 1.7(b) shows the
deviation o! from the target trajectory and the reconstruction error

¢ LS a2 2
ot = [nz ; |AZ| (1.6.13)

1.7 Density of Pinnings

1.7.1 Lattice Partitioning

To facilitate practical implementation the control algorithm presented above should
be easily extendable to systems of arbitrary size. However, even though it is the-
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oretically possible to control the deterministic coupled map lattice of any length
using just two pinning sites, practical limitations require the introduction of ad-
ditional pinning sites as the length of the lattice grows. Since the total number
of pinnings changes, when the lattice becomes large, it makes more sense to talk
about the minimal density of pinnings, or the maximal number of lattice sites per
pinning, that allows successful control under given conditions.

Furthermore, since coupling between lattice sites is local, the feedback !, only
affects the dynamics of the sites ¢ which are sufficiently close to the pinning site ;.
Conversely, we expect the feedback u!, to be essentially independent of the state
of the lattice sites 7 far away from the pinning i,,. Using this observation allows
one to simplify the construction of the control scheme substantially by explicitly
defining the neighborhood of each pinning ¢,, that contributes to and is affected
by the feedback u’,. We thus naturally arrive at the idea of distributed control.

By arranging the pinnings regularly we ensure that the lattice is partitioned into
a number of identical subdomains described by identical evolution equations. To
simplify the analysis we assume that each subdomain contains the minimal number
of pinning sites, i.e., two. Placing the pinnings at the boundaries of subdomains
allows one to choose boundary conditions for each of the subdomains at will, so we
assume that boundary conditions are periodic. This effectively decouples adjacent
subdomains, which can now be treated independently. The general problem of
controlling the lattice of arbitrary length n, is thus reduced to the simpler problem
of controlling the lattice of length ngy <« n, with two pinning sites, which was
studied in detail in the preceding sections.

Indeed, let the domain span the sites i1 through is =i, + ng — 1 of the lattice.
Then arbitrary boundary conditions

x;—l = ¢1($§1,'-'7$£2),
'Z.'i2+1 = ¢2(mz’17 Tt 7$i2) (171)

can be imposed by adjusting the feedback as follows

’i17
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which only requires the knowledge about the state of the system inside the subdo-
main and at two adjacent sites i; — 1 and iz + 1. If the exact form of the evolution
equation (1.2.8) is not known, the linearization of Eqs. (1.7.2) can be used instead.
The nonlinear version, however, has a significant additional benefit associated with
it: nonlinear decoupling of adjacent subdomains dramatically decreases the capture
time by decreasing the effective dimensionality of the system.

We demonstrate the effectiveness of nonlinear decoupling by stabilizing the
target state SIT1 of the CML defined by equations (1.2.8), (1.2.11) with a = 4.0
and € = 0.33. The lattice with n, = 128 sites was divided into subdomains of length
ng = 8, each controlled by two pinning sites placed at the boundaries. The results
presented in Fig. 1.8 show the evolution of the system from the initial condition
chosen to be a collection of random numbers in the interval [0,1]. The average
time to achieve control in each of the subdomains, t., is seen to be of order 10°
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Abb. 1.8: Stabilizing steady uniform state: a large lattice (n, = 128) is controlled by an
array of double pinning sites, placed at the boundaries of subdomains with length ng = 8.
The state of the system was plotted at each 10%th step.

iterations even though the subdomains were chosen relatively small. In general, ¢,
grows exponentially with the pointwise dimension of the attractor, ¢, o (6z)~ P,
and since D o ngy for large ng, the time ¢, can become prohibitively large, imposing
restrictions on the largest size of the subdomain.

1.7.2 State Feedback

The major factor limiting our ability to locally control arbitrarily large systems
with local interactions, however, is noise. The strength of noise and the values
of system parameters determine the maximal length 7, of the lattice that can be
controlled with two pinnings placed at the boundaries, which subsequently defines
the minimal density of pinning sites p = 2/7i,. It is interesting to note that, at least
for the target state S1T1, the length 71, can be estimated analytically [21] with
a rather good precision using the conditions of controllability and observability,
highlighting their fundamental role in the control problem.

First, assume that the state of the system can be determined directly at
any time, so that state feedback control can be used. In the deterministic case
the controllability condition determines whether there exists a control sequence
Auti,--. Autitme=1! bringing an arbitrary initial state Ax* to an arbitrary final
state Ax'/, where ty = t; + n,. In the presence of noise and without assuming any
functional relationship between the state and the feedback we can write

Axtitne — (A)nm Axti + Z(A)nm*kBAuti"'k*l + Z(A)’nmkawti'Fk*l. (1_7_3)
k=1 k=1

This equation is not exact, it is only an approximation of the exact nonlinear
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evolution equation (1.2.8), valid when both Ax?* and Au! are sufficiently small for
all times ¢ = ¢;,---,ty — 1, as discussed in section 1.3. The linearization (1.4.1)
on which Eq. (1.7.3) is based is valid for arbitrary Au?. However, since feedback
directly perturbes the state of the system its magnitude is limited by nonlinearities
to the same range dz as the local deviation Az! from the target state. Therefore,
the control sequence should satisfy both Eq. (1.7.3) and the restriction

Auf,| <63, m=1,2, t=t;---,t;—1 (1.7.4)

Taking Ax' = Ax!s = 0 (the initial and final states coincide with the target state)
Eq. (1.7.3) can be rewritten as

Ng Ng Ny
z==) (A FEWHTET =043 Y (A)"Fby, AT, (1.7.5)
k=1 k=1m=1

which is formally equivalent to the problem of finding the feedback sequence bring-
ing the system from the initial state Ax; = 0 to the final state Ax;y = z in n,
steps in the absence of noise.

Again we assume that the process noise w* is represented by a vector whose
components w! are independent random variables uniformly distributed in the in-
terval [—oy,, 04]. Noise is amplified roughly by a factor of « per iteration, where
is the largest eigenvalue (1.2.15) of the Jacobian. As a consequence, the left hand
side of Eq. (1.7.5) can also be represented as a vector with random components z;
distributed in the interval [—B0, 0], where

t

Ng—1

v
8= z |7|t =~ |’|7||_ 1 (1.7.6)
t=0

It could be argued that for the control to suppress any sequence of random pertur-
bations w!, every term (A)"=~*b,, Aulitk=1 on the right hand side of Eq. (1.7.5)
should be of the same order of magnitude as the amplified noise z. The vector
by Aufi™1 represents local perturbation dzf = ufi**~! introduced at the site
im at time t = t; + k — 1, while the matrix (4)™ ~* describes the propagation of
that perturbation throughout the lattice. According to the structure of the matrix
A local perturbation at site i,, affects the dynamics of the remote site j only after
propagating a distance [ = |i,, — j| in time At = [, decaying (or being amplified)
by a factor of ae per iteration. Consequently, the state of site j at time ¢; will be
affected by control Au!, applied only at times ¢;,---,t; + n, — [ — 1. The pertur-
bation applied at ¢ = ¢; + n, — [ — 1 is amplified the least and yields the order of
magnitude relation

6z = O ((ae) ™' Boy) - (1.7.7)

Due to the periodic boundary condition, 0 <! < n,/2. On the other hand, dz
can be estimated by equating the magnitude of the linear term with the magnitude
of the next nonlinear term in the Taylor expansion of the local map function:

f(@ +dz,a) = f(2,a) + k(6 + p(dz)? +---). (1.7.8)
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For instance, the logistic map (1.2.11) gives dz ~ p~1 =22 —1=1-2a"!. Asa
result, we obtain the following estimate on the size of the controllable domain for
an arbitrary coupled map lattice with the quadratic nonlinearity:

D () = — bow) £ 1) (1.7.9)

In(¢)

which is rather similar to the one obtained by Aranson et al. [23] for the lattice
with asymmetric coupling. Parameters £ and ¢ in Eq. (1.7.9) are defined by Eq.
(1.7.7) with | giving the tightest bound. For 0 < € < 0.5 (and | = n,/2) we get

E=llal -1 (=laf'/?e?, (1.7.10)
while for 0.5 < e <1 (and I = 0) we obtain
E=[laj(4e—1) =17, ¢ =|a|(4e—1). (1.7.11)

We should note that the estimate derived in [21] is only valid in the assumption
of strong local instability, |a| > 1, and is obtained as the limit of Eq. (1.7.9) with
p=1land £ =1.

Another method for the calculation of 7;(0,) was proposed by Socolar and
Egolf [24], who suggested to use the actual feedback gain matrix K to obtain more
precise results for a specific control scheme. As we have seen in section 1.4, when
the linear equation is perturbed by the noise of amplitude o,,, one can estimate
the average deviation from the target trajectory as o, = vo,, where v is the noise
amplification factor defined by Eq. (1.4.7). In a nonlinear system we instead have

0y = v(02 +02,)/?, (1.7.12)

where 0, is the error resulting from ignoring the effect of nonlinear terms in Eq.
(1.4.1). For a coupled map lattice with the quadratic nonlinearity one obtains
0zz = po2 and thus

o2 = v (o2 + plol). (1.7.13)

This is a quadratic equation in o2 which has solutions only when
v < 7o) = (2uow) "2, (1.7.14)

thus determining the critical noise amplification factor. For v > 7(gy,) the effect
of nonlinear terms can no longer be ignored and the control scheme breaks down.
In principle, one can stop here and numerically evaluate the length of the system
at which v = v(0y,), thus obtaining the required functional dependence 7i,(cy) =
ng(V(0y)) for a specific K.

However, making one more step allows one to easily extract the analytic de-
pendence on the strength of noise. It can be argued that for any K the noise
amplification factor depends exponentially on the length of the system

v=xn", (1.7.15)
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Abb. 1.9: The largest length of the lattice which can be stabilized with two pinning sites
using state feedback control: theoretical estimates n" (solid line) and n? (triangles),
and numerical results (squares) obtained with the process noise of amplitude o, = 1078

as functions of coupling € for a = 4.0.

where both x and i are functions of the system parameters a and € and the feedback
gain matrix K. Plugging Eq. (1.7.14) into (1.7.15) yields the final result in the
form similar to Eq. (1.7.9):

72 (0y,) = —ln(“a“l’r)l (;21;1(2"2). (1.7.16)

Two important conclusion can be drawn from this result. First of all, even though
the length 7, does depend on a particular choice of the feedback gain, this de-
pendence is rather weak, because it is attenuated by the logarithmic function, so
that the obtained estimate is valid for any typical feedback gain that stabilizes
the system. Second, the dependence on the strength of noise is also logarithmic
and weak, however, the magnitude of o, is that crucial parameter that ultimately
determines the scale for both n, and the minimal density of pinning sites p.

The maximal length of the system, that can actually be stabilized by the LQC
method with two pinning sites placed next to each other, is obtained numerically by
choosing the target state as the initial condition and monitoring the evolution of the
closed-loop system in the presence of process noise w! of amplitude o, applying
feedback calculated using the formula (1.3.9) with @ = I and R = 0. As seen
from Fig. 1.9, this length is quite large for a moderate level of noise and is rather
close to the values where the controllability breaks down according to Eq. (1.7.9).
The agreement between the numerical results and theoretical estimates (1.7.9) and
(1.7.16) is not perfect, although it is surprisingly good taking into account the order
of magnitude arguments used in the derivations. The choice of the noise level was
motivated by the need to separate the effect of the deviations o, introduced by
nonlinearity from the precision of numerical calculations o, = O(107!%) in the
evaluation of the feedback gain. Since 04, /04, = O(1), one needs 1 > o, > op,
0 0, = 1078 was taken here (as opposed to o, = 107! used in [21]).
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The minimal density of pinning sites is reduced substantially by replacing
equally spaced single pinnings with equally spaced paired pinnings. For the uni-
form steady target state S1T1, a = 4.0 and ¢ = 0.4, for example, the estimate
(1.7.9) gives ps = 2/nq = 1/11 for the noise level o, = 10~® (the actual value of
1/12 is even lower as seen from Fig. 1.9). If single pinnings are used instead, Eq.
(1.2.17) demands p1 = 1/ng = 1/2 > p, even in the absence of noise.

1.7.3 Output Feedback

Finally, consider the output feedback control of the target state S1T1. Let us
assume that the state of the system cannot be determined directly. Instead it has
to be reconstructed using the measurements at the pinnings, i.e., using the time
series of the lattice variables zf and z! . As we noted in section 1.6, this setup
dictates that C = B! in Eq. (1.6.9). To avoid unnecessarily complicating the
problem we also assume that the measurements are perfect, vt = 0.

In order to estimate n, with these assumptions we will need to exploit both the
controllability and the observability conditions. First, the state of the system has to
be reconstructed using n, consecutive measurements of the variables at the pinning
sites. However, because of the nonzero process noise the reconstructed state will
deviate from the actual state. Arguments similar to the ones used in deriving Eq.
(1.7.7) allow one to estimate the order of magnitude of the reconstruction error at
a lattice site with distance ! to the closest pinning:

681 = O ((ce) ' Bo) - (1.7.17)

Since the reconstruction error §%; is substantially larger than the strength of noise
0w, the former has to be substituted for the latter in Eq. (1.7.7) yielding

6z = O ((ae) %0y - (1.7.18)
Eventually, we obtain the following estimate of the maximal size:

In(uoy) +1n(€?) a8 (0w)

3)
21n(¢) T2

ﬁ(z (ow) =

(1.7.19)

i.e., one half of the size of the lattice that can be stabilized using state feedback.
This result can be understood intuitively: when output feedback is used, a signal
in the system has to travel twice the distance in twice the time, first from a remote
lattice site to the pinnings, carrying information about the state of the system, and
then back in the form of feedback. This is effectively equivalent to doubling the
size of the lattice, hence the factor of one half.

The same result can be obtained using the noise amplification factor. Observing
that according to our assumptions At = A, R = 0 and Q = (0?/3)EE", we
conclude that the filter gain and the feedback gain calculated for R = 0 and @ =
qEET, are directly related?, K = KT, as are the solutions of the Riccati equations,

2This is a general result: as long as A = At and C = Bf, taking K=Kt guarantees that the
filter is stable even if the feedback gain K is not optimal.
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Abb.1.10: The largest length of the lattice which can be stabilized with two pinning sites
using output feedback control: theoretical estimates ad (solid line) and alh (

and numerical results (squares) obtained with the process noise of amplitude o, = 108

triangles)

as functions of coupling e for a = 4.0. The measurement errors were assumed to be
negligible.

S = P. Therefore, the evolution equation (1.6.6) for the reconstruction error

reduces to
A%t = (A - BK)IA%! + Ew'. (1.7.20)

Comparing Eq. (1.7.20) with the closed-loop evolution equation (1.2.6) for the
state Ax?, we conclude that the respective noise amplification factors are equal,
v=7.

Since both the process noise and the deviation caused by nonlinear terms are
amplified first by the filter and then by the feedback, Eq. (1.7.12) has to be modified
to read

0y = (ol +02,)'?, (1.7.21)
with the subsequent change in the condition determining when the linear control

breaks down:
7(0w) = (2uoyw) 4. (1.7.22)

Plugging this result into Eq. (1.7.15) yields

In(uow) +In@xY) 78 (0w)
21In(n?) - 2

i (o) = (1.7.23)
We compare the theoretical predictions (1.7.19) and (1.7.23) with the actual
numerical results for the CML subjected to the noise of amplitude o, = 1078
in Fig. 1.10. The target state S1T1 is stabilized using output feedback control
(1.6.10), where the feedback gain K is calculated using Eq. (1.3.9) with Q = I
and R = 0 and the filter gain is set to K = K'. Once again we conclude that the
numerical results are in very good agreement with the theoretical estimates based
on the assumption that the breakdown of linear control is caused by the interplay
between the stochasticity and the nonlinearity of the evolution equation (1.2.8).
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1.8 Summary

Reviewing the obtained results one can conclude that the general problem of op-
timal control of spatially extended chaotic dynamical systems with noise can be
split into two major parts. The first part consists of analyzing how the spatial
structure of the system affects the control algorithm and use the results of this
analysis to determine the spatial structure of the control plant that is both effective
and practically realizable. The second part consists of finding the optimal control
perturbation driving the system towards the target state based on the available
information about the state of the system.

By considering the simplified model that nevertheless preserves the defining
features of a general spatially extended dynamical system such as symmetry and
locality we hope to determine the basic ingredients of a control algorithm that
should be applicable to a typical system of this class. Below we attempt to sum-
marize these ingredients in most general terms.

The first major ingredient is the local nature of the control algorithm. Even
though in certain cases global control might be used quite successfully, in general,
the locality significantly simplifies the analysis of both the interaction between the
system and the control plant, and the structure of the control plant itself. Besides,
the locality makes the control algorithm easily scalable and facilitates practical
implementation of the control strategy.

The second major ingredient is the proper mutual arrangement of the local-
ized regions where the dynamics of the system is perturbed by the control plant.
Choosing this arrangement in accordance with the underlying symmetries of the
system affords a significant reduction of the complexity with simultaneous increase
in the flexibility of the control algorithm, allowing it to control target states with
arbitrary spatiotemporal properties, requiring a smaller density of such localized
regions per unit length of the system. One particular arrangement deserves special
attention. We determined that, if the noise level is sufficiently small, a system
with translational (rotational) invariance and parity symmetry can be controlled
by dynamically adjusting the boundary conditions. This can be considered as a
“nonintrusive” control that requires minimal modification of the controlled system
and can be implemented rather easily in a variety of applications.

The third and final ingredient of a general control algorithm is the stochastic
optimal control method. The numerical results obtained indicate that the control
methods based on the deterministic approach are considerably less robust, i.e., have
much smaller basins of attraction and can tolerate only a small fraction of noise
eagsily suppressed by the stochastic optimal control, especially in the weak coupling
limit. Additionally, by subdividing the system into a number of noninteracting
subsystems, the combination of the optimal control and filtering techniques with the
local structure of the control plant yields a dramatic decrease in the average time
required to capture the trajectory of the system, exploring its chaotic attractor, by
linear control.
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