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The effective increase of the critical density associated with the interaction of relativistically intense laser pulses
with overcritical plasmas, known as self-induced transparency, is revisited for the case of circular polarization. A
comparison of particle-in-cell simulations to the predictions of a relativistic cold-fluid model for the transparency
threshold demonstrates that kinetic effects, such as electron heating, can lead to a substantial increase of the
effective critical density compared to cold-fluid theory. These results are interpreted by a study of separatrices
in the single-electron phase space corresponding to dynamics in the stationary fields predicted by the cold-fluid
model. It is shown that perturbations due to electron heating exceeding a certain finite threshold can force
electrons to escape into the vacuum, leading to laser pulse propagation. The modification of the transparency
threshold is linked to the temporal pulse profile, through its effect on electron heating.
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I. INTRODUCTION

The optical properties of a plasma under the action of a rel-
ativistically intense laser pulse (intensity I � 1018 W cm−2 for
1-μm wavelength) are profoundly affected by nonlinearities
in the corresponding laser-plasma interaction. In particular,
the question of whether a pulse with the carrier frequency ωL

propagates in a plasma of electron density n0 can no longer be
answered solely in terms of the critical density,

nc = ε0 me ω2
L/e2 , (1)

where me is the electron rest mass, −e is the electron charge,
and ε0 is the permittivity of free space. By definition, a
relativistically intense pulse accelerates electrons from rest
to relativistic momenta within an optical cycle and, thus,
the electron mass in Eq. (1) has to be corrected by the
relativistic factor γ = √

1 + p2/m2
ec

2, where p is the electron
momentum. For a purely transverse wave propagating through
a cold, homogeneous plasma, this relativistic factor can be
related, by the conservation of canonical momentum, to the
normalized amplitude of the wave vector potential a0 =
eA0/(mec), γ �

√
1 + a2

0/2 [1]. Therefore, one is forced to
introduce an intensity-dependent effective critical density [2,3]

neff
c =

√
1 + a2

0

2
nc. (2)

According to Eq. (2), a relativistically intense laser pulse
(a0 � 1) can propagate through a nominally overdense plasma,
with electron density nc < ne < neff

c , a phenomenon known
as relativistic self-induced transparency (RSIT). Apart from
its role as a fundamental process in laser-plasma interaction,
RSIT is also interesting for applications, as it often determines
the regime of efficient laser-target interaction. In the context
of ion acceleration, for instance, RSIT can prevent efficient
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ion radiation-pressure-acceleration from thin targets [4–8] or
laser-driven hole-boring in thicker ones [9,10]. On the other
hand, RSIT may enhance electron heating in the break-out
afterburner acceleration mechanism, thus allowing for higher
ion energies [11–13].

In this paper, we investigate RSIT in the case of a circularly
polarized (CP) laser pulse with finite rise (or ramp-up) time
τr and infinite duration, normally incident onto a semi-infinite
plasma with a constant density n0 > nc, and a sharp interface
with the vacuum. This configuration is of particular interest for
ultrahigh contrast laser interaction with thick targets. Unfortu-
nately, the simple relation (2), derived assuming a purely trans-
verse plane-wave and a homogeneous plasma of infinite extent,
does not apply to this setting. The main reason for this is that
the effect of the ponderomotive force (associated here with in-
homogeneities along the propagation direction) becomes dom-
inant and leads to a significant modification of RSIT threshold.
Since the 1970s, several analytical studies, mostly within the
framework of relativistic, cold-fluid theory [2], have been un-
dertaken to investigate strong electromagnetic wave propaga-
tion through inhomogeneous plasmas [14–16], culminating in
a derivation of a modified RSIT threshold, which incorporates
boundary conditions at the plasma-vacuum interface [17,18].
In order to establish contact with this line of previous work
and to focus on the key physical mechanisms, we will restrict
attention to immobile ions and one-dimensional geometry.

Based on the assumptions stated above, the relativistic
cold-fluid model predicts total reflection of the incident pulse,
if a certain density threshold nth(a0) is exceeded [17,18] [see
solid blue line in Fig. 1(a)]. The geometry of the stationary
state predicted for n0 > nth(a0) is illustrated in Fig. 1(b):
the ponderomotive force pushes the electrons deeper into
the plasma, creating a charge separation layer (CSL) and an
electron density spike [henceforth referred to as compressed
electron layer (CEL)] at the edge of the plasma. Electrons in
the CEL experience a strong electrostatic field (due to charge
separation), which balances the ponderomotive force. The
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FIG. 1. (Color online) (a) Effective critical density as a function of the laser field amplitude a0 as predicted by the simple relation (2)
(dashed black line). Threshold density nth(a0) below which, according to the cold-fluid theory (cf. Sec. II), no standing wave solutions exist
(solid blue line). RSIT threshold as extracted from our PIC simulations (cf. Sec. IV) with two different pulse rise times: 0.25τL (error bars)
and 4τL (triangular error bars), where τL = 2π/ωL is the laser period. (b) Schematic representation of the stationary solution predicted by the
cold-fluid theory for the case of total reflection [regions (A) and (B) of panel (a)]. Shown are the electric field Ex(x), vector potential of the
standing wave |a(x)|, and ion (electron) density ni(x) [ne(x)]; see Sec. II for details. (c) Schematic representation of a typical case of pulse
propagation in PIC simulations [for RSIT in region (B) or (C) of panel (a)]. Arrows indicate the direction of electron motion. See Sec. IV for
numerical results.

density in the CEL is typically much higher than neff
c and, thus,

pulse propagation is inhibited and a standing wave is formed.
For plasma densities n0 < nth(a0), such stationary solutions

cease to exist, and one enters the regime of RSIT. Particle-
in-cell (PIC) simulations [18,19], however, indicate that light
propagation in this regime is quite different from the traveling-
wave solutions discussed earlier [3]. Although a CEL is ini-
tially formed, electrons at its edge escape toward the vacuum,
leading to force imbalance and allowing the ponderomotive
force to push the CEL deeper into the target. The situation
is more reminiscent of hole-boring [10,20], (albeit with
immobile ions) with a penetration front moving deeper into
the plasma with a constant velocity vf , and a Doppler-shifted
reflected wave [Fig. 1(c)] (see also Refs. [21–24]).

In this work we show, through PIC simulations, that in the
presence of electron heating, induced by the pulse finite rise
time, such a propagation mechanism can be activated even
for densities n0 > nth(a0); see Fig. 1(a). The crucial role is
again played by electrons at the edge of the CEL escaping
toward the vacuum. However, it has been recently shown that,
in the total reflection regime, electrons at the edge of the CEL
cannot be forced to escape into the vacuum by infinitesimal
perturbations [19]. To interpret our results, we are thus led
to study the response of electrons at the edge of the CEL to
finite perturbations. Studying the dynamics of a test-electron
in the stationary fields predicted by the cold-fluid model for
the CSL and vacuum, we show that electron escape to the
vacuum is controlled by separatrices in the single-electron
phase space. Moreover, we demonstrate that the perturbation
threshold for unbounded motion (electron escape) predicted by
our analytical considerations is comparable to the attainable
electron momentum due to heating (in the CEL), observed
in our PIC simulations at the threshold for RSIT. Finally, we
study the effect of laser pulse rise time on electron heating and
on the observed modification of the RSIT threshold.

This paper is organized as follows. In Sec. II we revisit some
results of the stationary cold-fluid theory that motivate the
present study. In Sec. III we analyze the single-electron phase
space (for motion in vacuum and charge separation layer),
by determining equilibrium solutions (Sec. III B), studying
their linear stability (Sec. III C), and determining separatrices
of bounded and unbounded motion (Sec. III D). In Sec. IV
we present our PIC simulation results and relate them to the
analytical results of Sec. III. Finally, we discuss our findings
and present our conclusions in Sec. V.

II. REVIEW OF RELATIVISTIC COLD-FLUID
THEORY FOR RSIT

Throughout the paper, all quantities are normalized to
(so-called) relativistic units. In particular, velocity, time, and
distance are normalized to the speed of light c, inverse laser
frequency ω−1

L , and inverse vacuum wave number k−1
L = c/ωL,

respectively. Electric charges and masses are normalized to
e and me, respectively, and densities are normalized to the
critical density nc. Finally, electric fields are normalized to the
Compton field EC = me c ωL/e.

A. Stationary cold plasma model

In this section, we revisit the one-dimensional stationary
model proposed independently by Cattani et al. [17] and
Goloviznin and Schep [18] to describe the reflection of an
incident relativistic CP laser pulse by a nominally overdense
plasma with constant electron density n0 > 1 and a sharp
interface with vacuum. Our presentation follows Ref. [17].

We consider an incident CP laser pulse propagating along
the x̂ direction with the vector potential

AL(t,x) = a0√
2

[cos(t − x) ŷ + sin(t − x) ẑ], (3)
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where ŷ and ẑ denote the unit vectors forming an orthonormal
basis in the plane transverse to the laser propagation direction.
The pulse is incident from vacuum (x < 0) onto a semi-infinite
plasma (x > 0). In this work, as in Refs. [17,18], we will
neglect ion motion.

As outlined in the Introduction, we will consider stationary
solutions expressing the balance of the ponderomotive and
electrostatic forces, achieved once a CSL of sufficient thick-
ness xb is created; see Fig. 1(b). Assuming total reflection
of the laser pulse by the plasma, the balance of the radiation
(∼a2

0) and electrostatic pressures [∼(n0 xb)2/2], provides a
rough estimate for the thickness of the CSL,

xb �
√

2 a0

n0
. (4)

The exact expression for xb and the limits of applicability of
Eq. (4) are discussed below; see Eq. (17).

In the following, we will look for stationary solutions with
vector potential of the form

A(t,x) = a(x)[cos(t + θ/2) ŷ + sin(t + θ/2) ẑ], (5)

where θ accounts for the phase jump of the reflected wave

AR(t,x) = a0√
2

[cos(t + x + θ ) ŷ + sin(t + x + θ ) ẑ]

at x = xb and will be computed below. In what follows, we will
refer to the spatial function a(x) as the “vector potential.” Note
that, in the absence of plasma, we have a(x) = √

2a0 cos(x +
θ/2).

Modeling electrons as a relativistic cold fluid, as in
Ref. [17], we seek stationary solutions satisfying the system
of equations

dφ

dx
= dγ

dx
, (6)

d2φ

dx2
= ne − n0, (7)

d2a

dx2
=

(
ne

γ
− 1

)
a. (8)

Here, φ(x) is the electrostatic potential, ne(x) is the electron
density and the Lorentz factor is written as γ (x) =

√
1 + a2(x)

through conservation of transverse canonical momentum.
Equation (6) expresses the balance between the electrostatic
and ponderomotive forces inside the plasma. Hence, it holds
only for x � xb. Equation (7) is simply Poisson equation and
Eq. (8) is the propagation equation (in the Coulomb gauge) for
the field prescribed by Eq. (5).

To solve the system of Eqs. (6)–(8), one considers the
CSL and the CEL separately. The electron density ne(x),
electrostatic field Ex(x) = −dφ/dx, and vector potential a(x)
are obtained in each layer. Solutions are then matched at the
electron front x = xb to ensure continuity of a(x), of its first
derivative da/dx and of Ex(x).

B. Charge separation layer, 0 � x � xb

The electrostatic field in the CSL, 0 � x � xb, is easily
found by integrating Poisson Eq. (7) with ne = 0 (no electrons)
and boundary condition Ex(0) = 0 (to match the electrostatic

field at the vacuum),

Ex(x) = −dφ

dx
= n0 x. (9)

Thus, the electrostatic field for 0 � x � xb increases linearly,
up to its maximum value Eb ≡ Ex(xb) = n0 xb. For total
reflection at x = xb we can integrate Eq. (8) once to get(

da

dx

)2∣∣∣∣
x=xb

= 2 a2
0 − a2

b, (10)

where ab = a(xb) is the vector potential at the plasma
boundary. Here, we write the amplitude of the standing wave
arising from the combination of the incident and reflected
waves AL and AR , respectively, as

a(x) =
√

2 a0 sin

[
arcsin

(
ab√
2 a0

)
− (x − xb)

]
, (11)

which implies that in Eq. (5) we have θ/2 = π/2 −
arcsin(ab/

√
2 a0) − xb. At this point, there are two un-

known quantities, xb and ab, which will be determined self-
consistently by considering the region x � xb. Note that we
assume ab > 0, while from (11) we have a′(xb) < 0 so that the
ponderomotive force dγ /d x = γ −1 a da/dx pushes electrons
deeper into the plasma, thus balancing the electrostatic force.

C. Compressed electron layer, x � xb

We now derive equations for the electron density, vector
potential, and electrostatic field in the plasma, x � xb. Com-
bining Eqs. (6) and (7), one can rewrite the normalized electron
density in the plasma as a function of the vector potential a(x)
and its first two derivatives,

ne(x) = n0 + 1√
1 + a2

[
a

d2a

dx2
+ 1

1 + a2

(
da

dx

)2
]

. (12)

Substituting Eq. (12) in Eq. (8), we obtain a differential
equation for the vector potential only:

d2a

dx2
= a

1 + a2

(
da

dx

)2

−(1+a2−n0

√
1 + a2) a. (13)

In the case of total reflection, Eq. (13) describes the evanescent
field in the overdense plasma and has to be solved with
boundary conditions a(x) → 0 and da/dx → 0 for x → +∞
[25]. Equation (13) admits a first integral,

1

2(1 + a2)

(
d a

d x

)2

− 1

2
(2n0

√
1 + a2 − a2) = −n0, (14)

which may be used to derive a solution that satisfies the
required boundary conditions [15],

a(x) = 2
√

n0 (n0 − 1) cosh [(x − x0)/λs]

n0 cosh2 [(x − x0)/λs] − (n0 − 1)
, (15)

where λs = (n0 − 1)−1/2 is the classical skin-depth, and x0 is
determined by ensuring the continuity of the vector potential
at x = xb.

With a(x) inside the plasma provided by Eq. (15), one
obtains ne(x) from Eq. (12), while Eq. (6) provides the
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electrostatic field in this region,

Ex(x) = − d

dx

√
1 + a2. (16)

Equation (16) together with Eqs. (9) and (10) and the continuity
of the electrostatic field at x = xb gives an explicit expression
for the position of the electron front,

xb = ab

n0

√
2 a2

0 − a2
b

1 + a2
b

. (17)

Finally, from Eqs. (10) and (14), one obtains:

2 a2
0 + a4

b

1 + a2
b

= 2 n0
(√

1 + a2
b − 1

)
. (18)

This equation defines, for a given incident laser field amplitude
a0 and initial plasma density n0, the maximum evanescent field
ab in the plasma. Solutions ab of Eq. (18) should satisfy the
additional condition

2 a2
0 − a2

b � 0 , (19)

which follows from Eq. (10).
Note that, in the limit 1 	 ab 	 a0, Eq. (17) allows us to

recover the approximate result Eq. (4). On the other hand,
from Eqs. (17) and (18) we find that in the limit ab 	 1
(correspondingly a2

0 	 n0), xb � 2 a2
0/n

3/2
0 .

D. Threshold for RSIT

For a given plasma density n0, Eq. (18) admits a solution
only when the maximum evanescent field ab satisfies [17]

2
(
n0 + a2

b

)
� 3 n0

√
1 + a2

b . (20)

As shown in Ref. [18], for n0 < 3/2, solutions compatible with
Eq. (19) can only be found in the region a2

0 � 2 n0(n0 − 1).
Thus, in this case, the threshold incident laser amplitude reads

a2
th = 2 n0(n0 − 1) . (21)

For n0 > 3/2 condition Eq. (19) is always fulfilled and
Eq. (20) defines the regime of total reflection. The threshold
for RSIT corresponds to equality in Eq. (20). The maximum
evanescent field at the threshold then reads

a2
B = n0

(
9

8
n0 − 1 + 3

2

√
9

16
n2

0 − n0 + 1

)
. (22)

The threshold incident laser field amplitude ath, above which
RSIT occurs in a plasma with initial density n0, is obtained by
substituting ab = aB from Eq. (22) in Eq. (18),

a2
th = n0

(
1 + a2

B

) (√
1 + a2

B − 1
) − a4

B/2. (23)

Depending on the density range, Eq. (21), respectively
Eqs. (22) and (23) define a threshold amplitude ath(n0), above
which RSIT occurs for a given plasma density. Alternatively,
for a given incident amplitude a0, we may read Eq. (21)
respectively Eqs. (22) and (23), as defining an effective critical
density nth(a0), below which RSIT occurs. This is illustrated
in Fig. 1(a). Equation (21) yields

nth(a0) = 1

2

(
1 +

√
1 + 2a2

0

)
, nth < 3/2, (24)

while Eqs. (22) and (23) can be inverted analytically in the
limit n0 
 1, yielding

nth(a0) � 2

9
(3 +

√
9
√

6 a0 − 12), nth 
 1. (25)

Thus, the asymptotic behavior of nth(a0) in the limit a0 
 1
is nth ∝ a

1/2
0 , a much more restricting condition than Eq. (2),

which for large a0 becomes neff
c ∝ a0.

As discussed in the Introduction, our PIC simulations
indicate that for pulses with finite rise time, the transition
between total reflection and RSIT occurs within the limits set
by Eqs. (2) and (25) and, moreover, depends on the pulse rise
time. In order to explain this discrepancy, we will now study
single electron dynamics in the stationary fields (in vacuum
and CSL) calculated above.

III. SINGLE ELECTRON DYNAMICS

A. Equations of single electron motion

The equations of motion for an electron in the region x � xb

(i.e., in the vacuum and CSL), in the case of total reflection,
read

ẋ = px/γ , (26)

ṗx = −∂ γ

∂ x
− Ex(x), (27)

where we have used conservation of transverse canonical
momentum to write the electron γ factor as

γ (x,px) =
√

1 + a2(x) + p2
x, (28)

px is the electron’s longitudinal momentum, the electrostatic
field Ex(x) and vector potential a(x) are given by Eqs. (9) and
(11), respectively, and dotted quantities are differentiated with
respect to time.

Equations (26) and (27) can be derived from the Hamilto-
nian

H (x,px) = γ (x,px) − φ(x), (29)

where the electrostatic potential reads

φ(x) =
{

0, x < 0,

− 1
2n0x

2, 0 � x � xb.
(30)

The Hamiltonian H (x,px) is a conserved quantity and we
can thus write an explicit expression for the electron orbit with
initial conditions x0,px0:

px(x) = ±
√

[H (x0,px0) + φ(x)]2 − a2(x) − 1. (31)

Equation (31) suffices to plot portraits of the single-electron
phase space, as shown in Fig. 2. In the following subsections
we explain how the several solutions depicted in Fig. 2 are
interrelated, in order to understand how phase space geometry
affects the threshold of RSIT.

B. Equilibrium solutions

The simplest type of solutions of Eqs. (26) and (27) are
equilibrium solutions for which ẋ = ṗx = 0. We have already
seen that, within the framework of the stationary cold-fluid
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FIG. 2. (Color online) Typical single-electron phase space por-
trait for Eqs. (26) and (27). The first six equilibria Qb, Q1, . . . , Q5

corresponding to positions xb, x1, . . . , x5 and zero momentum are
shown as blue dots. Separatrices are shown as red dashed lines and
some typical trajectories are depicted as black solid lines. The CSL
is depicted as a gray-shaded area.

model, the force balance Eq. (6) is satisfied in the plasma and
in particular at x = xb. Thus, the point (x,px) = (xb,0) is an
equilibrium which we label as Qb. (For the same reasons, any
point in the plasma with px = 0 will be an equilibrium.)

In the CSL and vacuum, on the other hand, the ponderomo-
tive and electrostatic forces are not balanced in general, and
equilibria for the motion of a test particle have to be found by
setting ẋ = ṗx = 0 in Eqs. (26) and (27). We label equilibria
at the left of Qb as Qm, m = 1, 2, . . . , where m increases with
decreasing xm.

For x < 0 (in the vacuum) equilibria correspond to ∂xγ =
a
γ

da
dx

= 0, i.e., a = 0 or da/dx = 0, which, according to
Eq. (11), leads to

x−
k = arcsin

(
ab√
2 a0

)
+ xb − kπ/2 . (32)

Here, k can be any positive integer provided that x−
k < 0,

and k even or odd correspond to a(x−
k ) = 0 or a′(x−

k ) = 0,
respectively. We note that in our labeling scheme, index k in x−

k

does not always correspond to index m in labeling of equilibria
Qm, i.e., we will generally have xm = x−

k with m �= k [26].
For 0 � x � xb (in the CSL), the equilibrium condition

∂xφ = ∂xγ must be solved numerically, using Eqs. (11) and
(30) for a(x) and φ(x), respectively. A perturbative solution
can be obtained in the neighborhood of xb, by expanding ṗ =
− ∂ γ

∂ x
− Ex(x) = 0 to second order in x − xb. We obtain two

solutions, x = xb and

x1 � xb + 2
(
1 + a2

b

)2[
2
(
a2

b + n0
) − 3 n0

(
1 + a2

b

)1/2]
ab

(
2a2

0 − a2
b

)1/2(
4 + 2a2

b + a4
b + 6a2

0

) . (33)

Comparing Eq. (33) with condition (20), we see that x1 � xb,
as long as a standing wave solution exists, i.e., for n0 � nth. At
threshold, n0 = nth, we have x1 = xb. That is, if we approach
the RSIT threshold (as predicted by cold-fluid theory), the
equilibrium Q1 approaches Qb until the two states coalesce;
see Fig. 3(c).

C. Stability of equilibria

Linear stability analysis of the equilibria determined in
Sec. III B can give us information on the behavior of orbits in
the neighborhood of the equilibria. For notational convenience,
we define phase space variables ζ = (ζ1,ζ2) ≡ (x, px) and
rewrite the equations of motion [Eqs. (26) and (27)] in
the form

ζ̇i = Fi(ζ ), (34)

where F1(ζ ) = ζ2/γ and F2(ζ ) = − ∂ γ

∂ ζ1
− Ex(ζ1).

Considering infinitesimal perturbations in the neighborhood
of equilibrium ζ (m), and substituting ζ (t) = ζ (m) + ξ (t), with
‖ξ‖ 	 1, in Eq. (34), one obtains

ξ̇ = A(ζm)ξ, (35)

where the Jacobian matrix A(ζm), with elements

Aij = ∂Fi

∂ζj

∣∣∣∣
Qm

, (36)

has been introduced.
Solutions of the linear system Eq. (35) are of the

form ξ (t) = exp[A(ζm)t]ξ (0), and thus the linear stability
of equilibrium Qm is determined by the eigenvalues of the
Jacobian matrix. In Hamiltonian systems with one degree of
freedom, classification of equilibria Qm by linear stability is
straightforward (see, e.g., Ref. [27]), as there are only two
possibilities:

� A(ζm) has a pair of real eigenvalues λ1 = −λ2 > 0.
Solutions then deviate from Qm at an exponential rate,
‖ξ (t)‖ ∼ eλ1t‖ξ (0)‖, and the equilibrium (called a saddle) is
unstable.

� A(ζm) has a conjugate pair of purely imaginary eigen-
values λ1 = λ∗

2 = iw. Solutions then oscillate around Qm

with period 2π/w, and the equilibrium (called a center) is
(neutrally) stable.

Taking into account equilibrium conditions ẋ = ṗx = 0,
we find from Eq. (36)

A(ζm) =
(

0 1/γm

A21 0

)
,

where

A21 = 1

γ

[
a2

m (a′
m)2

γ 2
m

− (a′
m)2 + a2

m

]
−

{
n0 , x > 0,

0 , x < 0.

Here, we have defined am = a(xm), a′
m = a′(xm), γm =√

1 + a2(xm), and we have used Eq. (8).
Eigenvalues of A(ζm) are given by

λ1,2(xm) = ±
√

A21/γm. (37)

In the vacuum, x < 0, equilibria correspond to either a(x−
k ) =

0 (k even, nodes of the standing wave) or a′(x−
k ) = 0 (k odd,

antinodes of the standing wave), where the x−
k are given by

Eq. (32). Then, Eq. (37) yields by using Eqs. (11) and (32),

λ1,2(x−
k ) = ±

{
i
√

2 a0, k even,√
2 a0√

1+2 a2
0

, k odd. (38)

Thus, in the vacuum, equilibria alternate between being (neu-
trally) stable (k even, nodes) and unstable (k odd, antinodes).
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In the CSL, x > 0, we have

λ1,2(xm) = ± 1

γ 2
m

√
γ 2

m

(
a2

m − (a′
m)2

) + a2
m(a′

m)2 − γ 3
mn0.

For the equilibrium Qb at the plasma boundary, x = xb, we
get from Eq. (11)

λ1,2(xb) = ±
√

a4
b + 2a2

b − 2a2
0 − n0

(
1 + a2

b

)3/2/(
1 + a2

b

)
.

(39)

Linear (neutral) stability of Qb requires

a4
b + 2a2

b − 2a2
0 − n0

(
1 + a2

b

)3/2
< 0,

or, using Eq. (18) to eliminate a0,

2
(
a2

b + n0
) − 3n0

(
1 + a2

b

)1/2
< 0. (40)

The same condition for linear stability of the equilibrium at
xb was obtained by Eremin et al. [19] by considering the
infinitesimal variation in electrostatic and ponderomotive force
experienced by an electron whose position has been perturbed
infinitesimally to xb − |δx|. Condition (40) also coincides with
condition (20) of existence of a stationary standing wave
obtained by Cattani et al. [17]. Therefore, as long as an
equilibrium at xb exists, it is neutrally stable.

Assessing stability of the equilibria with 0 < x1 < xb

analytically is somewhat more difficult [even when an explicit
expression such as Eq. (33) is available]. We can, however,
conclude that Q1 is an unstable equilibrium on topological
grounds. If we assume Q1 to be stable, then motion in
its neighborhood would be oscillatory. Therefore, a point
(xs,0) in phase space with x1 < xs < xb would be shared by
oscillatory solutions encircling Q1 and Qb (in phase space).
This would contradict uniqueness of solutions, unless the point
(xs,0) were to be reached in infinite time, i.e., unless it is
an unstable equilibrium. However, by construction there is
no equilibrium between Q1 and Qb. In fact, the degenerate
oscillations introduced in this argument, which reach Q1 in
infinite time, are the familiar separatrices of bounded and
unbounded motion, which we will now study in detail.

D. Separatrices

In the vacuum (x < 0), all unstable equilibria at x−
k (with k

odd) correspond to the same value of H :

H (x−
k ,0) =

√
1 + 2 a2

0 . (41)

Conservation of H , thus, allows for a heteroclinic connection,
i.e., for an orbit which starts infinitesimally close to Qk and
ends infinitesimally close to Qk+2 or Qk−2 (in infinite time).
According to Eq. (31), these orbits obey

px(x) = ±
√

2a2
0 − a2(x). (42)

Heteroclinic connections, Eq. (42), act as separatrices of
bounded and unbounded motion; see Fig. 2.

Within the CSL (0 < x < xb), an unstable equilibrium, e.g.,
Q1 in Fig. 2, will in general have H (x1,0) �= H (x3,0), since H

now also includes an electrostatic field contribution. Therefore,
a heteroclinic connection from Q3 to Q1 is not possible, and the
separatrix starting out at Q3 is a homoclinic connection, i.e.,

an orbit that returns to Q3 in infinite time. For the same reason,
the separatrix labeled B in Fig. 2 starts in the neighborhood of
Q1 and wanders off to x = −∞, while the separatrix labeled
A starts at x = −∞ and ends at Q1.

Of greatest importance in the following discussion are the
separatrices labeled � and �, as they determine the region
within which motion close to Qb is oscillatory. The equations
of the separatrices � and � are given by Eq. (31) with
(x0,px0) = (x1,0) [on separatrix �, motion is backwards in
time and (x1,0) is a final, rather than initial, condition]. The
point on separatrix � at position xb (at the plasma boundary)
then defines a critical momentum pcr

x , given by

pcr
x = −{[√

1 + a2(x1) + n0
(
x2

1 − x2
b

)
/2

]2 − a2
b − 1

}1/2
.

(43)

If a single electron at the edge of the plasma xb is given an
initial momentum −|�px |, with |�px | < |pcr

x |, it will move
within the limits set by separatrices � and �, returning back to
the plasma. If, on the other hand |�px | > |pcr

x |, the electron’s
motion will be unbounded and it will escape to the vacuum.
Alternatively, one can define a critical value of the Hamiltonian

H cr ≡ H (x1,0) =
√

1 + a2(x1) + n0 x2
1/2. (44)

Motion of electrons with H (xb,px) > H cr and px < 0 will be
unbounded.

Equation (43) shows that |pcr
x | is always nonzero as long

as x1 �= xb; for fixed a0 it becomes smaller as n0 decreases
and x1 approaches xb, vanishing at the threshold nth given by
Eq. (20). This behavior is illustrated in Fig. 3 for a0 = 7. (See
also Fig. 10.)

With the above results it becomes clear that finite perturba-
tions of initial conditions of electrons at the edge of the plasma,
for example, due to longitudinal electron heating, could lead
to electrons escaping toward the vacuum even though Qb is
stable in the linear approximation, provided that the pertur-
bation (here negative momentum) is large enough. Our main
conclusion is that pulse propagation by expulsion of electrons
toward the vacuum could occur for densities higher than the
threshold density nth predicted by the cold fluid approximation.
In Sec. IV we show that electron heating at the edge of
the plasma indeed provides a mechanism by which electrons
acquire sufficient momentum to escape toward the vacuum.

IV. PIC SIMULATIONS

To investigate the transition from total reflection to RSIT,
we perform PIC simulations [28] using the one-dimensional
in space, three-dimensional in velocity (1D3V) code SQUASH

[29]. The code uses the finite-difference, time-domain ap-
proach for solving Maxwell’s equations [30], and the stan-
dard (Boris) leap-frog scheme for solving the macro-particle
equations of motion [31]. Charge conservation is ensured by
using the method proposed by Esirkepov when projecting the
currents [32].

In all simulations presented here, ions are immobile and
only electron motion is considered. We use the spatial
resolution dx = λL/500 and time step dt = τL/1000, where
λL and τL are the laser wavelength and duration of one optical
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FIG. 3. (Color online) For a given laser field amplitude, here a0 = 7, the absolute value of the critical momentum for an electron to escape
to the vacuum |pcr

x | decreases as n0 decreases. Shown are the cases (a) n0 = 5.8, (b) n0 = 4.8, (c) n0 = 3.31. Color code is the same as described
in the legend of Fig. 2. In panel (c), equilibria Q1 and Qb cannot be distinguished within the resolution of this plot, n0 being slightly above the
cold-fluid theory threshold nth = 3.30458. Note that the scale of x and px has been kept the same in all panels.

cycle, respectively. Up to 1000 macroparticles per cell have
been used.

The plasma extends from x = 0 to x = Lp, with a constant
initial density n0 and electron temperature T0 � 5 · 10−4 (in
units of mec

2). The plasma size Lp is chosen so that Lp >

c τint, where τint is the laser-plasma interaction time. Hence,
the plasma is long enough to be considered semi-infinite. The
CP laser pulse [as described by Eq. (3)] is incident from x < 0
onto the plasma. In this work we consider laser field amplitudes
in the range a0 = 1 − 30. The laser pulse profile is trapezoidal,
i.e., the intensity increases linearly within a rise time τr , up to
a maximum value a2

0/2, and we consider the exemplary cases
τr = 0.25 τL and τr = 4 τL.

Figure 1(a) summarizes our findings on RSIT, comparing
the threshold density nth(a0) predicted by Cattani et al. [17]
with our 1D3V PIC simulation results. In order to determine
whether RSIT occurs or not in a simulation, the position xb of
the maximum electrostatic field is plotted as a function of time
(see Fig. 4). The regime of total reflection is characterized
by the formation of a CSL with (approximately) constant
thickness xb (Fig. 4, n0 = 6.7 − 8). On the other hand, RSIT is
associated with front propagation at an approximately constant
velocity vf , so that the position of the maximum electrostatic
field increases linearly with time (Fig. 4, n0 = 5.75 − 6). This

0 20 40 60 80 100
0

1

2

3

4

5

t

x
b

n0 = 5.75

n0 = 6

n0 = 6.25

n0 = 6.7

n0 = 8

FIG. 4. (Color online) Position xb of the maximum value of the
electrostatic field as a function of time from PIC simulations with
different densities and a0 = 15, τr = 0.25 τL.

allows us to place lower and upper bounds on RSIT threshold
density, for a certain a0, indicated by errorbars in Fig. 1. For
densities within these limits, it is hard to decide whether RSIT
occurs or not (Fig. 4, n0 = 6.25).

In the next subsections we examine in detail typical cases
of total reflection and front penetration.

A. Total reflection

Whenever total reflection occurs, the system eventually
settles to a quasi-stationary state. The size of the charge
separation layer xb remains constant or slightly oscillatory
around a value that is found to be in good agreement with the
theoretical prediction of the cold-fluid model [Eq. (17)]; see
Fig. 5. The same is true for the field and density profiles; a worst
case agreement is shown in Fig. 6, where the quasistationary
state reached for a0 = 15, n0 = 7 and τr = 0.25τL is close to
the numerical RSIT threshold (the agreement becomes better
for higher n0 or larger τr ). Although the density profile presents
oscillations, the fields in the CSL and vacuum agree very
well with the predictions of cold-fluid theory. This justifies

5

10
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20

25

30

4 6 8 10

1

2

3

4

5

6

7 a0 =

n0

x
b

FIG. 5. (Color online) Comparison of cold-fluid model prediction
for xb (blue solid lines) with the (time-averaged) position of the
maximum electrostatic field in our PIC simulations (dots), with τr =
0.25 τL. For values of n0 to the left of the thick, gray, dashed line
RSIT occurs and xb does not reach a constant average value in our
PIC simulations.
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FIG. 6. (Color online) Electron density and field profiles from
PIC simulations for a0 = 15, n0 = 7, at t = 2.55 τL (top panel) and
t = 2.95 τL (bottom panel). The stationary cold-fluid model solution
for the electron density (red dashed line), electrostatic field (blue
dotted line) and vector potential (black dash-dotted line) are also
shown. Note that densities have been rescaled to the unperturbed
density n0 for better readability.

a posteriory our use of stationary cold fluid theory predictions
for the fields in the vacuum to analyze single electron phase
space in Sec. III. The phase portrait for a0 = 15, n0 = 7, and
τr = 0.25τL is shown in the top row of Fig. 7. It is clearly
seen that electrons in the CEL do not have zero longitudinal
momentum px as the stationary cold-fluid model suggests but
rather oscillate around xb [the latter being in good agreement
with Eq. (17)]. As the minimum momentum attained by
electrons, which we will call pmin

x , is smaller in absolute value
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T
o
sc

n0 = 20
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FIG. 8. (Color online) Period of oscillations of xb as a function
of a0 for three different n0. Points with error bars correspond to the
periods as deduced from our PIC simulations, while the solid lines
correspond to Tosc = 1.75 TQb

= 1.75 × 2π/Imλ1, where λ1 is given
by Eq. (39).

than the critical momentum required to move beyond the limits
set by the separatrices of bounded and unbounded motion,
|pmin

x | < |pcr
x |, electrons which cross the plasma boundary xb

do not escape into the vacuum but rather re-enter the CEL.
As can be seen in Fig. 4, for n0 = 6.7 − 8, the position of the

plasma boundary xb oscillates in time, leading to oscillations
of the maximum electrostatic field. These oscillations can be
related to the excursion of electrons in the region x < xb, cf. the
top panel of Fig. 7. To verify this, we plot in Fig. 8 the period
Tosc of these oscillations for different a0 and n0 well in the
regime of total reflection. The frequency of these oscillations
is not linked to the plasma frequency (observe the dependence
on a0 in Fig. 8) but rather on the frequency of oscillations of
electrons around the equilibrium Qb. If we ignore the role of
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FIG. 7. (Color online) Comparison between phase space separatrices as predicted by the stationary, cold-fluid model, and single particle
distribution function f (x,px) from PIC simulation results for a0 = 15 and n0 = 7 (top row), n0 = 6 (bottom row) and rise time τr = 0.25 τL.
Snapshots are shown 0.2 τL apart. The plasma boundary (x = xb), as predicted by the cold-fluid model, is indicated by a black, dotted, vertical
line. The color coding of trajectories follows Fig. 2. Note the logarithmic scale in the color coding of f (x,px).
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the self-consistent fields within the plasma, the characteristic
period of oscillation in the linear neighborhood of Qb reads
TQb

= 2π/Imλ1, where λ1 is the eigenvalue given by Eq. (39).
As shown in Fig. 8, we find Tosc ∝ TQb

. We also note
the similarity of these oscillations with the so-called piston
oscillations in laser hole-boring [10], although in the present
case the oscillations only involve electrons.

B. RSIT

The cold fluid model presented in Sec. II predicts a sharp
threshold, either for density n0 or laser amplitude a0, for RSIT.
However, as already mentioned above, one of the main results
of this paper is that our PIC simulations clearly show RSIT in
a parameter region where the cold fluid model predicts total
reflection [area (B) in Fig. 1(a)]. A typical case of RSIT in
this regime is presented in Fig. 9, where a0 = 15, n0 = 5.5,
and τr = 0.25τL. Charge separation and compressed electron
layers are formed in the early stages of interaction, with
profiles that agree well with the predictions of cold-fluid
theory. However, electrons escape the CEL, and the pulse
can propagate (see middle row of Fig. 9). The mechanism
of propagation is rather complex, but its initial phase can
be intuitively understood as follows. When a sufficiently
high number of electrons escapes from the CEL to the
vacuum, the electrostatic field within the CSL decreases, the
ponderomotive force is no longer balanced, and the laser pulse
can push the CEL deeper into the plasma. The increase of the
CSL size tends to compensate the force imbalance, but as more

and more electrons escape, the pulse continues to propagate
deeper into the plasma. We note that once electrons escape
and propagation commences the stationary model is no longer
valid and electron dynamics becomes complex, with electron
bunches leaving and re-entering the plasma (see Fig. 9 and
Ref. [19]).

To understand how the shrinking of the width of separatrices
in phase space with decreasing density (and constant a0)
leads to propagation, we examine the phase space portrait for
a0 = 15, n0 = 6.0, and τr = 0.25 τL, which corresponds to a
case just below the numerical density threshold for RSIT; see
the bottom row of Fig. 7. In this case, the minimum momentum
acquired by electrons in the CEL satisfies |pmin

x | > |pcr
x |

and electrons move outside the separatrix of bounded and
unbounded motion, eventually reaching the vacuum, while the
CEL moves deeper into the plasma.

Figure 10 provides a further verification of the role the
longitudinal electron heating plays in enabling electrons to
escape from the CEL into the vacuum. We use Eq. (43) to plot
|pcr

x | as a function of a0 and n0 (light-gray surface). For a given
rise time, here τr = 0.25 τL, we also plot, as a function of a0
and n0, the absolute value of the minimum momentum |pmin

x |
acquired by electrons in the CEL as inferred from our PIC
simulations (dark-blue surface). To reduce noise we average
|pmin

x | over one laser period (starting at t � 2τL), or at most
until electrons escape. Thus, our |pmin

x | is generally slightly
underestimated, however the intersection of the two surfaces
|pcr

x | and |pmin
x | lies within the limits set by the error bars in

Fig. 1(a). Note that |pmin
x | is getting smaller with decreasing a0,

0

20

40

60

0

20

40

60

-5 0 5 10

0

20

40

60

-5 0 5 10 -5 0 5 10
x x x

n
s
,
|a|

,
E

x
n

s
,
|a|

,
E

x
n

s
,
|a|

,
E

x

ne(x)

|a(x)|
Ex(x)

ni(x)

FIG. 9. (Color online) Field and density evolution for RSIT above the cold-fluid theory threshold, a0 = 15, n0 = 5.5. Snapshots are taken
one laser period apart, starting at t = 0.
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n0
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|p x
| |pmin

x |

|pcr
x |

FIG. 10. (Color online) The absolute value of momentum |pcr
x |

corresponding to the separatrix of bounded and unbounded motion
for electrons at xb for different a0 and n0, according to Eq. (43) is
shown as a light-gray surface. An estimate of the absolute value of
the minimum momentum |pmin

x | attained by electrons in the CEL, as
determined by our PIC simulations with τr = 0.25τL, is shown as
a dark-blue surface. The light- and dark-colored points represent
PIC simulation results corresponding to onset of RSIT and total
reflection, respectively, for a0 = 5, 10, . . . ,30. On both surfaces, lines
of constant a0 are drawn to guide the eye. The contour |pcr

x | = 0
(black, thick, solid line) corresponds to the threshold for RSIT
predicted by cold-fluid theory.

and one recovers the threshold predicted by cold-fluid theory
for a0 � 5, where the longitudinal electron momenta become
negligible [compare with Fig. 1(a)].

C. Dependence on rise time

As we have seen, the threshold for transition between
total reflection and RSIT clearly depends on the longitudinal
momenta of the electrons in the CEL. As these momenta come
from collisionless heating of the electrons, we may expect that
the RSIT threshold also depends on the laser pulse profile.
As can be seen in Fig. 1(a), the deviation of the numerically
obtained RSIT threshold from the predictions of cold fluid
theory is smaller for a pulse with larger rise time, suggesting a
less significant electron heating in the CEL at given a0 and n0.
The effect of pulse rise time on the width of the longitudinal
electron momentum distribution function is shown in Fig. 11,
where the space-integrated distribution for a0 = 15, n0 = 7 is
compared for the cases τr = 0.25τL and τr = 4τL. The stiffer
pulse clearly corresponds to a larger |pmin

x |.
In Fig. 12, we moreover compare the front propagation

velocity, vf , for two sets of simulations with rise times
τr = 0.25τL and τr = 4τL. The front propagation speed vf

is determined by the slope of the curves xb(t); see Fig. 4.
We have studied cases of propagation for different a0 and
n0 close to the threshold predicted by cold-fluid theory, for
which vf ranges from 10−3 c up to 0.25 c; see Fig. 12. Within
the error bars for the transparency threshold, vf takes values
too small to reliably indicate propagation (i.e., beyond the
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)

FIG. 11. (Color online) Space-integrated (over all x) longitudinal
momentum distribution f (px) at t = 15 τL for a0 = 15, n0 = 7 and
τr = 0.25 τL (red solid curve), τr = 4 τL (black dotted curve). Both
cases correspond to total reflection. The central peak corresponds to
the plasma bulk.

accuracy permitted by our spatial and temporal resolution).
As Fig. 12 shows, the propagation velocity vf for the same a0

and n0 is generally lower for the pulse with the larger rise time,
τr = 4 τL. Nevertheless, for higher a0, vf is far from negligible
for densities lying well above the cold-fluid threshold, even for
the case with larger rise time.
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FIG. 12. (Color online) Front velocity vf as measured from PIC
simulations with two different pulse rise times, (a) τr = 4 τL, (b) τr =
0.25 τL. The blue solid line and error bars are the same as described
in the legend of Fig. 1(a). The lower density range of simulations
performed for a given a0 has been set to improve readability.
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V. DISCUSSION AND CONCLUSIONS

The relativistic, cold-fluid, stationary solutions of Refs. [15,
17,18] provide a convenient starting point to investigate the
threshold of RSIT, even in the presence of longitudinal electron
heating. While the fields inside the plasma clearly differ from
the predictions of cold fluid theory, the fields in the CSL and
vacuum are rather insensitive to density fluctuations within
the plasma. Therefore, the dynamics of a test electron in
the CSL or the vacuum can be accurately described using
the fields of the stationary problem. This finding allows us
to specify separatrices of bounded and unbounded motion
for single electron dynamics, encapsulating the competition
of ponderomotive and electrostatic forces at the edge of the
plasma.

We have shown that one can define a critical momentum
|pcr

x |, Eq. (43), or value of the Hamiltonian H cr, Eq. (44),
corresponding to the separatrix which delimits oscillatory
motion around the equilibrium position at the edge of the
CEL. When a sufficiently high number of electrons at the
edge of the CEL have |px | > |pcr

x | and escape to the vacuum,
RSIT occurs. In this work, we did not focus on the mechanism
that provides momentum to electrons; i.e., we did not attempt
to provide a model for the collisionless heating mechanism.
We did, however, show, through our numerical study of the
impact of the pulse rise time, that the pulse shape crucially
affects longitudinal heating and that stronger heating results
in a higher threshold density for RSIT. A detailed model for

electron heating, which would allow us to predict |pmin
x | rather

than infer it from PIC simulations, as done in Fig. 10, will be
pursued elsewhere. We stress that, although in more realistic
scenarios of laser-plasma interaction the actual heating at
the plasma boundary would depend on several factors (see
Ref. [33] for a recent study), the basic mechanism of electron
escape into the vacuum at high enough momentum is expected
to be the same.

In summary, we have used a dynamical systems approach
to bridge the cold-fluid and kinetic levels of RSIT descrip-
tion. Deviations of PIC simulations from cold-fluid theory
predictions are explained as a longitudinal heating effect
induced by the incident laser pulse. The pulse temporal
profile clearly affects electron heating and through it the
threshold of RSIT. While there are several experimental
works addressing RSIT in the case of linearly polarized laser
pulses [34–37], to the best of our knowledge the verification
of RSIT for CP light remains elusive. We hope that our
results trigger further investigations in this domain, as the
reported dependency of the RSIT threshold on the pulse profile
could provide a versatile tool for high-contrast CP laser pulse
characterization.
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