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We derive, both theoretically and using an envelope code, threshold intensities for stimulated Raman

scattering, which compare well with results from Vlasov simulations. To do so, we account for the

nonlinear decrease of Landau damping and for the detuning induced by both the nonlinear wave number

shift �kp and the frequency shift �!p of the plasma wave. In particular, we show that the effect of �kp
may cancel out that of �!p, but only in that plasma region where the laser intensity decreases along the

direction of propagation of the scattered wave. Elsewhere, �kp enhances the detuning effect of �!p.
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In this Letter, we address the dynamical evolution of
stimulated Raman scattering (SRS) of a laser in a plasma,
in the so-called kinetic regime dominated by nonlinear
wave-particle interactions. This requires understanding
the self-organization of a complex nonlinear system, which
is a major issue in modern physics (see, for example,
Ref. [1]). Theoretical descriptions of self-organization
are usually out of reach, despite notable attempts to use
simple criteria (see Ref. [2] and references therein). This is,
nevertheless, what we provide here for SRS, by assuming
that it self-optimizes its growth, i.e., that the electron
plasma wave (EPW) space profile self-organizes so as to
cancel, as much as possible, the detuning induced by its
nonlinear frequency shift �!p. This result is akin to that of

autoresonance, i.e., a space variation of the EPWamplitude
such that nonlinear effects cancel out the detuning induced
by inhomogeneity, as shown in Ref. [3]. However, autor-
esonance, as derived in Ref. [3] with prescribed nonlinear
terms, cannot be straightforwardly extrapolated to a nearly
homogeneous plasma since this would lead to infinitely
small EPW amplitudes. This calls for a new theoretical
framework, which allows for self-consistently derived non-
linear terms, and which we provide in this Letter. Although
our theory is quite general, we restrict here to homoge-
neous plasmas because our main point is the modeling of
nonlinear kinetic effects, which are more easily evidenced
when the plasma density is uniform. More specifically, we
derive and solve in this Letter envelope equations which
allow for the nonlinear decrease of Landau damping and
for the nonlinear frequency shift of the plasma wave, as
derived in Refs. [4–7], but also for the self-optimization of
SRS. As will be shown, accounting for each of these effects
is necessary to make predictions in good agreement with
those of Vlasov simulations as regards the growth of SRS,
as can be seen in Figs. 2 and 3(b). This is particularly true
to derive threshold intensities for SRS, i.e., conditions
ensuring that Raman reflectivity remains very small, which
is a major issue for inertial confinement fusion [8]. We,

however, do not focus here on any specific application,
since the scope of this Letter is to give a general description
of the nonlinear kinetic effects and of their impact on SRS.
One of the main points of this Letter is the effect of �!p

on SRS, which has actually been widely discussed in the
past. Detuning due to the nonlinear EPW frequency shift
was proposed in Ref. [9] as a saturation mechanism for
SRS, while in Ref. [10], and for the same parameters as in
Ref. [9], the growth of a sideband was shown to give rise to
bursts in Raman reflectivity. The breakup of the EPW was
further investigated in Ref. [11], and was attributed to
modulational instability, induced by �!p. Moreover,

wave front bowing induced by �!p was evidenced in

Ref. [11], and was experimentally shown to lead to an
effective side-scatter in Ref. [12]. In this Letter, we focus
on the detuning induced by �!p during the course of SRS

growth, which has recently been questioned. Indeed, sev-
eral recent publications, Refs. [13–15], pointed out the
effect of the nonlinear plasma wave number shift �kp,

which could cancel out the detuning induced by �!p.

However, in Ref. [5], a closer look at the time evolutions
of the nonlinear wave number shifts showed that this
cancellation was not perfect and that a phase mismatch
�’ between the laser, scattered, and plasma waves did
build up as SRS grew. However, no quantitative estimate
of this effect was available at that time, and this is what we
now address. As shown in Refs. [14,15], and is obvious
from the envelope equation (5) below, cancellation of the
effect of �!p by that of �kp requires �kp ¼ �!p=vgs,

where vgs is the group velocity of the scattered wave

which, so far, may be either positive or negative. Now,
clearly, for �kp to change from its initial value �kp � 0 to

�!p=vgs, while j�!pj keeps on increasing with time as

SRS grows, @t�kp needs to be of the same sign as

�!p=vgs. As is well known, and will be proved further

in this Letter, @t�kp ¼ �@x�!p, where x is the direction

of propagation of the waves. Hence, �kp ¼ �!p=vgs re-
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quires @x�!pðvgs=�!pÞ< 0. Let us now assume, using

the results of Refs. [5,16], that �!p only depends on the

plasma wave amplitude Ep, and that d�!p=dEP < 0 and

�!p < 0. Then, the condition @x�!pðvgs=�!pÞ< 0 trans-

lates into vgs@xEp < 0. Now, provided that the laser is

focused inside of the plasma, as is usually the case in
experiments, it is clear that the space profile of Ep should

be similar to that of the laser intensity. We therefore con-
clude that only in that space domain where the laser
intensity decreases along the direction of propagation of
the scattered wave may �kp cancel out the detuning effect

of �!p while, elsewhere, it enhances it. As shown in Fig. 1,

this effect is clearly observed in our Vlasov simulations
described below.

In this Letter we study one-dimensional simulations of
SRS, but we also want to somehow allow for the x depen-
dence of the laser intensity which, as just shown, has
important consequences on Raman scattering. To do so,
we artificially multiply, in the equations we solve for SRS,

the ponderomotive force ~v� ~B by a Lorentzian function
LðxÞ. Then, as shown in Fig. 1, and in agreement with our
previous reasoning, wherever vgs@xLðxÞ< 0, j�j �
j�!p � vgs�kpj � j�!pj and the phase mismatch �’

remains small while, elsewhere, j�j> j�!pj and j�’j
increases nearly monotonically with time. Hence, �!p

does induce a detuning that slows down the growth of

SRS, but only in one half of the plasma. How to correctly
account for this is one of the main points of this Letter.
Let us now detail our kinetic modeling of SRS, in the

regime when the waves are nearly monochromatic, so that

the total electric field may be written as ~Etot ¼
Ep sinð’pÞx̂þ ½El sinð’lÞ þ Es cosð’sÞ�ŷ, where Ep;l;s are,

respectively, the slowly varying amplitudes of the plasma,
laser, and scattered waves, which are real and positive
quantities. ’p;l;s are rapidly varying phases from which

one defines the wave numbers kp;l;s � @x’p;l;s and fre-

quencies !p;l;s � �@t’p;l;s. Then, it is clear that @tkp;l;s ¼
�@x!p;l;s. We define the phase mismatch between the

three waves as �’ � ’p þ ’s � ’l and assume that, in

the linear limit, �’ ¼ 0. This amounts to assuming !lin
l ¼

!lin
p þ!lin

s and klinl ¼ klinp þ klins , where the superscript

‘‘lin’’ refers to the linear value of the considered quantity.
Then, directly from Maxwell’s laws, and using the results
of Refs. [4–7], we derive the following envelope equations
for the real wave amplitudes,

½@t þ vgp@x þ ��Ep ¼ LðxÞð�p=2ÞElEs cosð�’Þ; (1)

½@t þ vgs@x � i�s�Es ¼ ð�s=2ÞElEpe
�i�’; (2)

½@t þ vgl@x � i�l�El ¼ �ð�l=2ÞEsEpe
i�’; (3)

where �l;s � ekp=ð2m!s;lÞ, �e being the electron charge

and m its mass; vgl;s � kl;sc
2=!l;s, with c being the speed

of light in vacuum; and �l;s � ½!2
l;s � ðkl;scÞ2 �

!2
pe�=2!l;s, where !pe is the electron plasma frequency.

In Eq. (1), �p � ekp=ðm!l!s@!�
r
effÞ, where the deriva-

tion of @!�
r
eff and its nonlinear variations can be found in

Refs. [4,6]; � is the nonlinear Landau damping rate of the
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FIG. 2 (color online). Raman reflectivity as a function of time
when Te ¼ 5 keV, n=nc ¼ 0:1, and IL ¼ 3� 1015 W=cm2 or
IL ¼ 3:3� 1015 W=cm2. Panels (a) and (c) show calculations
using Vlasov simulations, while panels (b) and (d) show those
using our envelope code.
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FIG. 1 (color online). Results from Vlasov simulations of
Raman backscatter for an intensity profile given by the green
dashed curve of Fig. 3(a), when Te ¼ 5 keV, n=nc ¼ 0:1, and
IL ¼ 4� 1015 W=cm2, showing j�!pj [blue solid line in

panel (a)] and j�j � j�!p � vgs�kpj [green dashed line in

panel (a)] normalized to the plasma frequency when x ¼
100�l, i.e., when the laser intensity decreases along the direction
of propagation of the backscattered wave. Panel (b) is the same
as panel (a) but when x ¼ 275�l, i.e., when the laser intensity
increases along the direction of propagation of the backscattered
wave; panels (c) and (d) are for �’=�, when x ¼ 100�l and x ¼
275�l.
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EPW, whose explicit expression can be found in Ref. [6],
and vgp is the nonlinear group velocity of the plasma wave

whose variations can also be found in Ref. [6]. Moreover,
the factor LðxÞ in Eq. (1) results from our artificial multi-

plying of the ponderomotive force ~v� ~B byLðxÞ, in order
to account for the longitudinal space profile of the laser
intensity. In order to use the criterion of self-optimization,
which is a key ingredient in our theory, we shift to the
following wave amplitudes: Ep;l;s, defined by Ep � 2Ep,

El � 2Ele
�i�’l , and Es � 2Ese

�i�’s�i�’p , where
�’p;l;s � ’p;l;s � ðklinp;l;sx�!lin

p;l;stÞ denote the nonlinear

phase shift for each wave. Note that, so far, El;s are com-

plex quantities, while Ep is still real. In the limit when

�!l;s � ð!l;s �!lin
l;sÞ and �kl;s � ðkl;s � klinl;sÞ are so small

that ð�!l;s=!l;sÞ2 and ð�kl;s=kl;sÞ2 may be omitted in the

envelope equations, Eqs. (1)–(3) readily yield

½@t þ vgp@x þ ��Ep ¼ L�p ReðElE
�
sÞ; (4)

½@t þ vgs@x þ ið�!p � vgs�kpÞ�Es ¼ �sElE
�
p; (5)

½@t þ vgl@x�El ¼ ��lEsEp; (6)

where ReðxÞ stands for the real part of x.
We want to use in Eq. (5) the adiabatic values of �!p

derived in Ref. [5], which were shown to be quite accurate.
Yet, despite their accuracy, these values are just not good
enough because, since they only depend on the EPW
amplitude and not on the dynamical evolution of SRS,
they cannot allow for Raman self-optimization. As a result,
plugging �kpðx; tÞ ¼

R
t
0 �@x�!pðx; uÞdu into Eq. (5),

with �!p calculated as in Ref. [5], leads to large thresh-

old intensities and to a spurious rapid saturation of SRS due
to dephasing which are not recovered in Vlasov simula-
tions. An exact theoretical derivation of �!p being clearly

out of reach, there is little hope for a direct exact resolution
of Eqs. (4)–(6), and this is where our hypothesis of self-

optimization enters. We keep the adiabatic values of �!p

but plug into Eq. (5) �kp ¼ minðRt
0 �@x�!pdu; �!p=vgsÞ

when �!p=vgs>0, and �kp ¼ maxðRt
0 �@x�!pdu; �!p=

vgsÞ in the opposite case. Hence, we enforce the conver-

gence of �kp towards �!p=vgs, whenever the gradient of

�!p allows it. This amounts to assuming that the EPW

space profile self-organizes so as to cancel, as much as
possible, the detuning induced by �!p. Similarly, keeping

Ep real while using for �!p our approximate adiabatic

expressions leads to technical difficulties due to the fact
that Ep may change sign. In order to avoid these difficul-

ties, we need to allow the frequency shift of the EPW to
assume slightly different values than our adiabatic ones,
which amounts to allowing Ep to have a time-varying

phase. To do so, we replaceReðxÞwith the identity operator
in the right-hand side of Eq. (4). Hence, unless one is able
to exactly calculate �!p, deriving accurate envelope equa-

tions like Eqs. (4)–(6) (formally exact when the higher
order space and time derivatives of the wave amplitudes
are 0) is not enough. A practical resolution requires a slight
change in these equations, and the use of the hypothesis of
self-optimization.
In order to test the accuracy of our modeling, we now

compare results derived from the numerical resolution of
Eqs. (4)–(6) against those of Vlasov simulations of SRS. In
all our simulations, the ions form a uniform neutralizing
background, the electron temperature Te and density n are
uniform, and n is expressed in terms of the critical density,
nc � "0m!2

l =e
2. We actually simulate the optical mixing

of a laser with peak intensity IL and of a counterpropagat-
ing seed with peak intensity Is ¼ 10�5IL. We therefore
only make simulations of Raman backscatter. The laser
wavelength is �l ¼ 0:351 �m, while the seed wavelength
is chosen so as to maximize the SRS growth rate in the
linear regime. The total length of the simulation box is L ¼
350�l � 123 �m, and the Lorentzian function is LðxÞ ¼
f1þ ½ðx� x0Þ=�x�2g�1 � f1þ ½ðxz � x0Þ=�x�2g�1 when
xz < x < 2x0 � xz and 0 elsewhere, and we chose in all
our simulations x0 ¼ 150�l, xz ¼ 33�l, and �x ¼ 39�l.
Vlasov simulations are performed using the code ELVIS

described in Ref. [17], while the envelope code solving
Eqs. (4)–(6) will be described in a forthcoming publica-
tion, and uses classical numerical algorithms. We first
focus on the threshold laser intensity Ith, below which
Raman amplification of the seed is nearly ineffective and
SRS reflectivity R is very small. Figure 2 shows the sharp
transition in R induced by a very small increase of the laser
intensity near threshold, which is akin to that experimen-
tally observed in Ref. [18]. Such a transition, for the
threshold intensities we find, can only be explained by
the nonlinear decrease of the Landau damping rate �, as
described in Ref. [6]. As shown in Table I, there is a good
agreement between the values of Ith derived from our
envelope code and from Vlasov simulations over a wide
range of kp�D, where �D is the Debye length. It is note-

worthy that, just below threshold, in both Vlasov and
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FIG. 3 (color online). Panel (a): Landau damping rate normal-
ized to its linear value, as calculated by our envelope code when
Te ¼ 5 keV, n=nc ¼ 0:1, IL ¼ 3� 1015 W=cm2, i.e., just be-
low threshold, and at time t ¼ 20 ps (blue solid line) and LðxÞ
(green dashed line). Panel (b): Raman reflectivity when Te ¼
3 keV, n=nc ¼ 0:1, IL ¼ 1:25� 1015 W=cm2 from Vlasov
simulations (blue solid line) and from our envelope code (green
dashed line).

PRL 105, 015001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
2 JULY 2010

015001-3



envelope simulations, SRS reflectivity oscillates with time,
thus evidencing the detuning effect of �!p. Moreover, R

may actually be significantly larger than the value Rlin ¼
1:5� 10�5 linear theory would predict, which shows that
� has been nonlinearly reduced, at least in a substantial
fraction of the simulation box. Actually, from our envelope
simulations, and as shown in Fig. 3(a), we find that just
below threshold for Raman backscatter, � assumes its
linear value in that space domain before the maximum of
LðxÞ, i.e., when x < x0, and is 0 elsewhere. The physical
interpretation of this result is quite clear. In a situation
such as that of Fig. 3(a), SRS is ineffective when x < x0
because the EPW is too Landau damped, but also when
x > x0 because of the detuning effect of �!p enhanced

by that of �kp. A further increase of the laser intensity

would lead to a nonlinear reduction of � in the space
domain x < x0, where SRS is not hampered by the effect
of �!p, and therefore to a large increase of the reflectivity.

Using this result, we now derive a theoretical estimate for
Ith. From the results of Ref. [6], we know that � � 0

whenever
R
!Bdt > 6, where !B �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eEpkp=m

q
, and

where the integral is calculated in the plasma wave frame.
We therefore estimate that, at threshold,

Rx0
0 ð!B=v�Þdx ¼

6, where v� is EPW phase velocity. Since, at threshold, �

assumes its linear value when x < x0, we use linear theory
in the strong damping limit, and in a steady state, to
evaluate Ep there. Hence, when x < x0, we estimate Ep�
L�pElEs=�

lin, with EsðxÞ ¼ EsðLÞe½
R

x

L
�ð	Þd	�, where

�ðxÞ � LðxÞ�p�sjElj2=ð�linvgsÞ. Note that the latter ex-

pression for EsðxÞ underestimates its value at threshold
because it does not account for the nonlinear reduction of
� when x > x0. As a result, our theoretical values for Ith
overestimate those derived from Vlasov simulations, but
only by a factor close to 2, which is remarkable for such a
simple calculation.

Close to threshold, it may take tens of picoseconds for
SRS reflectivity to reach its first maximum so that Raman

reflectivity could effectively be suppressed by such tech-
niques as smoothing by spectral dispersion [8]. We there-
fore find it very important to check that we correctly model
the time evolution of SRS reflectivity above threshold. To
this end, we define I3 as the laser intensity such that, if
IL > I3, it takes less than 3 ps for SRS reflectivity to reach
either 10% or the value of the first maximum found in
Vlasov simulations. Table I shows that, for the seven cases
we investigated, and which span values of kp�D ranging

from 0.3 to 0.57, there is a good agreement between the
values of I3 found from our model and from Vlasov simu-
lations. How accurately our model equations predict the
growth of SRS may, moreover, be appreciated in Figs. 2
and 3(b).
In conclusion, we derived coupled envelope equations

for SRS, allowing for nonlinear kinetic effects, and solved
them using, as a basic ingredient, the hypothesis of self-
optimization of simulated Raman scattering. This let us
derive threshold intensities and SRS growth times in very
good agreement with those found using Vlasov simula-
tions, over a large range of kp�D. We, moreover, came to

the unexpected result that the nonlinear phase mismatch
between the waves depended on the longitudinal profile of
the laser intensity, and was small wherever vgs@xIL < 0.

This Letter thus provides a precise description of the
impact of nonlinear kinetic effects on the growth of SRS.
Work at LLNLwas supported by DOE Contract No. DE-

AC52-07NA27344 (LDRD Tracking No. 08-ERD-017).
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