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Abstract. Quasiperiodic oscillations and shape-transformations of higher-order

bright solitons in nonlinear nonlocal media have been frequently observed in recent

years, however, the origin of these phenomena was never completely elucidated. In this

paper, we perform a linear stability analysis of these higher-order solitons by solving

the Bogoliubov-de Gennes equations. This enables us to understand the emergence of

a new oscillatory state as a growing unstable mode of a higher-order soliton. Using

dynamically important states as a basis, we provide low-dimensional visualizations of

the dynamics and identify quasiperiodic and homoclinic orbits, linking the latter to

shape-transformations.
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1. Introduction

Bright solitons are particle-like nonlinear localized waves , that keep their form while

evolving due to a compensation of diffraction or dispersion of the medium by the

nonlinear self-induced modification of the medium [1]. Usually, solitons are studied in

systems exhibiting local nonlinearities, where the guiding properties of the medium at a

particular point in space depend solely on the wave intensity at that particular point [2].

Here, we consider nonlocal nonlinearities, i.e. situations in which the nonlinear response

of the medium at a point depends on the wave intensity in a certain neighborhood of

that point, where the extent of this neighborhood is referred to as degree of nonlocality.

Nonlocal nonlinearities are ubiquitous in nature, for example, when the nonlinearity is

associated with some sort of transport process, such as heat conduction in media with

thermal response [3–5], diffusion of charge carriers [6, 7] or atoms/molecules in atomic

vapors [8,9]. Nonlinearities are also nonlocal in case of long-range interaction of atoms in

Bose-Einstein condensates (BEC), such as in case of dipolar BEC [10–13] or BEC with

Rydberg-mediated [14,15] interactions. In addition, long-range interactions of molecules

in nematic liquid crystals also result in nonlocal nonlinearities [16–19].

The balance between diffraction and nonlinearity may lead to stable solitons

withstanding even strong perturbations. In particular, it has been shown, that nonlocal

nonlinearities crucially modify stability properties of localized waves. With respect to

bright solitons, they lead to a much more robust evolution as compared to its local

counterpart [20, 21]. This is due to the fact, that nonlocality acts like a filter by

averaging or smoothing-out effect on perturbations which would otherwise grow in case

of local response of the medium [22]. For example, higher-dimensional solitons would

collapse for systems exhibiting local nonlinearities, whereas they can be stabilized by

nonlocality [23–25].

In this work, we investigate the linear stability and nonlinear dynamics of higher-

order solitons. In particular, we study the quadrupole soliton Q and the second-order

radial soliton R2 (a hump with a ring), as sketched in Fig. 1. For those solutions,

a quasiperiodic shape transformation between states of different symmetries has been

observed recently in [26, 27]. However, a complete understanding of this spectacular

phenomenon is still missing. One difficulty in the analysis of the shape transformations

is that they cannot be described solely in terms of linear perturbation because they are

not small [27]. Nevertheless, here we show that in spite of the fact that we are dealing

with a highly nonlinear phenomenon, deeper understanding can be gained from the

linear stability analysis of the corresponding Bogoliubov-de Gennes (BdG) equations.

In other words, solutions of the linear stability analysis of the solitons are used to

describe wave dynamics in the neighborhood of a soliton solution. Moreover, in order to

fully understand nonlinear dynamics, we employ and further develop techniques recently

introduced in dynamical systems studies of dissipative partial differential equations

(PDE) [28, 29]. These methods employ projection of PDE solutions from a functional

infinite space onto a finite number of important physical states or dynamically relevant
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Figure 1. Two particular soliton solutions: a) quadrupole soliton Q and b) second-

order radial soliton R2. Both soliton profiles can be chosen real without loss of

generality. The lower plane shows the modulus square depicted in color scale of the

two solitons.

directions. Here, the relevant directions are mainly the unstable and stable internal

modes of the solitons. The introduction of these low-dimensional projections will

allow us to interpret the non-periodic soliton oscillations as indication of homoclinic

connections. Moreover, we are able to understand how different solutions, including

quasiperiodic oscillations, are organized by this homoclinic connection. The same

analysis should also work for a larger variety of higher-order solitons of this nonlocal

system, such as those presented e.g. in [26, 27].

The paper is organized as follows: In Sec. 2, we introduce the governing equations

of motion. In Sec. 3, we solve the BdG equation to find the internal modes of

the quadrupole soliton Q as well as the second-order radial soliton R2. In Sec. 4,

we discuss nonlinear soliton propagation, introduce low-dimensional projections and

study homoclinic and quasiperiodic trajectories in this representation. Finally, we will

conclude in Sec. 5.

2. Model equations

The underlying model equation for our subsequent considerations is the nonlocal

nonlinear Schödinger equation (NLS)

i∂tψ +∆ψ + θψ = 0, (1)

where ∆ = ∂xx + ∂yy denotes the transverse Laplacian. Depending on the actual

context, |ψ(r, t)|2 can be identified with either the intensity of an optical beam in scalar,

paraxial approximation, or the density of a two-dimensional BEC within mean field

approximation. The nonlinearity θ is given by the convolution integral

θ =

∫

K(r− r′)|ψ(r′, t)|2d2r′, (2)

where the kernel K is determined by the physical system under investigation, and

r = (x, y). If K(r) = K(|r|), then Eq. (1) is invariant under rotation and the angular
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momentum is conserved. This is the case here, as we consider the Gaussian nonlocal

model, for which quasiperiodic oscillations have been originally observed [26, 27]:

K(r) = e−r
2

. (3)

Even though there is no actual physical system associated with the Gaussian model, it

is commonly used in the literature as a toy model for nonlocal nonlinearities. Note that

without loss of generality the width of the kernel K has been set to unity, in order to

have the same scaling as used in [26, 27].

3. Linear stability analysis of higher-order solitons

Let Φ be a bright solitonic solution to our governing equation (1)

Φ(r, t) = ψS(r)e
iλt, (4)

where λ is the propagation constant or chemical potential for the case of optical beam

or BEC, respectively, and ψS denotes the stationary profile of the soliton. Because we

will not consider solitons carrying angular momenta (e.g., vortices), we can choose ψS(r)

to be real.

In order to find numerically exact stationary profiles ψS(r), we use variational

solutions as input to an iterative solver [30]. Typically, we use a grid of 400×400 points

to determine ψS(r). This transverse resolution is also employed for numerical integration

of Eq. (1), i.e., for beam propagation or time evolution of the two-dimensional BEC.

Figure 2 shows solitonic family curves or the two higher order solitons we choose

to study here, the second-order radial state R2 and the quadrupole Q. Apart from

the total angular momentum, there are two conserved functionals, i.e. the Hamiltonian

H[ψ] associated with invariance with respect to time-translations and the mass M [ψ]

due to a global U(1) phase-invariance:

H[ψS] =

∫

|∇ψS|
2 d2r−

1

2

∫

|ψS(r)|
2K(r− r′)|ψS(r

′)|2d2r′d2r, (5)

M [ψS] =

∫

|ψS|
2d2r. (6)

Obviously, the family curves for the R2 and Q solitons are quite close to each other,

which was used in [26] to explain the observed quasiperiodic shape transformations

(energy crossing). However, we will see in the following analysis of projected propagation

dynamics in Sec. 4 that this very intuitive picture does not hold.

Let us first recall that the linear stability of solitonic solutions can be studied as

an eigenvalue problem as follows. We introduce a small perturbation δψ(r, t) to our

solitonic solution ψS(r) via

ψ(r, t) = [ψS(r) + δψ(r, t)] eiλt (7)

Plugging Eq. (7) into the governing equation Eq. (1) and retaining only first order terms

in δψ, yields the following (linear) evolution equation for δψ:
[

i∂t − λ+∆+

∫

K(|r− r′|)ψ2
S(r

′)dr′
]

δψ(r, t)
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Figure 2. Solitonic family curves for the second-order radial soliton R2 (blue) and

the quadrupole soliton Q (red). Dashed lines indicate parameter domains where the

soliton is linearly unstable.

+ψS(r)

∫

K(|r− r′|)ψS(r
′) [δψ(r′, t) + δψ∗(r′, t)] d2r′ = 0. (8)

With the ansatz

δψ(r, t) = δu(r)eiκt + δv∗(r)e−iκ∗t (9)

for the perturbation we can derive the eigenvalue problem (BdG equation)
[

∆− λ+

∫

K(|r− r′|)ψ2
S(r

′)d2r′
]

δu(r)

+ψS(r)

∫

K(|r− r′|)ψS(r
′) [δu(r′) + δv(r′)] d2r′ = κδu(r) (10)

−

[

∆− λ +

∫

K(|r− r′|)ψ2
S(r

′)d2r′
]

δv(r)

−ψS(r)

∫

K(|r− r′|)ψS(r
′) [δv(r′) + δu(r′)] d2r′ = κδv(r). (11)

Real-valued eigenvalues κ of Eq. (10) are termed orbitally stable and the corresponding

eigenvector (δu, δv) can be chosen real-valued. On the other hand, complex eigenvalues

with negative imaginary part indicate exponentially growing instabilities. We note that

due to the special structure of Eq. (10) [which has its origins in the Hamiltonian structure

of Eq. (1)], if κ is an eigenvalue, then −κ as well as ±κ∗ are also eigenvalues.

Next, we solve Eq. (10) in order to obtain the internal modes of the second-order

radial soliton R2 and the quadrupole Q, respectively. A trivial solution to this problem

is always given by (δu, δv) = ±(ψS,−ψS) with eigenvalue κ = 0. This so-called trivial

phase mode is linked to the phase invariance of solitons. Derivatives of this trivial phase

mode with respect to x or y are also trivial eigenvectors‡ with eigenvalue κ = 0, and thus

the eigenvalue κ = 0 is degenerate. Moreover, due to symmetry properties of the system

trivial modes appear twice in the spectrum, i.e., we expect sixfold degeneracy of the

eigenvalue κ = 0. However, when solving the discretized version of Eq. (10) numerically,

this degeneracy may be lifted. Thus, degenerate eigenvectors with zero eigenvalues may

‡ The trivial modes (δu, δv) = ±(∂xψS,−∂xψS) resp. (δu, δv) = ±(∂yψS,−∂yψS) are linked to the

translational invariance of the system.
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in fact become slightly complex without actually indicating an instability. In other

words, their nonzero imaginary part is a numerical artefact of the discretization and

occurs because the full eigenspace has to be spanned by the eigenvectors. The actual

computation of the linear eigenvalue problem Eq. (10) is numerically expensive, since

the matrix we have to diagonalize is full, i.e. all entries are nonzero. In order to achieve

reasonable computation times, we usually reduce the grid-size to 100× 100 points only.

Then, the matrix we have to diagonalize has 4× 108 non-zero elements.

In Fig. 3, we show the spectrum of the linear stability analysis (BdG equation) for

the second-order radial soliton R2 and the quadrupole soliton Q [a) resp. b)] for mass

M = 200. Note that for modes with purely imaginary eigenvalue κ = iIm κ, Eq. (9)

reads δψ(r, t) = [δu(r) + δv∗(r)] e−Im (κ)t, and it makes sense to define

ê(r) = δu(r) + δv∗(r). (12)

Only the second order radial state R2 is unstable, and we name the two unstable

internal modes ê1, ê2. The unstable modes ê1, ê2 ought to be degenerate for symmetry

reasons, the small splitting of the eigenvalues (κ1 ≈ −2.7i, κ2 ≈ −2.5i) is again

a numerical artefact due to the discretization of the eigenvalue problem Eq. (10).

Interestingly, the shape of the unstable eigenmodes ê1(r), ê2(r) resembles quadrupoles.

In fact, for practical purposes (see next section) as well as to verify these findings we

furthermore solved the eigenvalue problem Eq. (10) for R2 on a radial grid [31] with

eightfold resolution. Then, instead of two stable and unstable quadrupoles, one finds

one stable and unstable vortex with topological charge m = ±2 and |κ| ≈ 2.74. The

vortices corresponding to m = 2 and m = −2 can be superposed to again yield the

quadrupoles ê1, ê2 found already with the full 2D solver, but with much higher precision.

Because Eq. (10) is linear, the amplitudes of the êj are not fixed, and we normalize the

latter according to
∫

ê∗j(r)êj(r)d
2r = 1, j = 1, 2. (13)

The quadrupole soliton Q in Fig. 3b) is stable, because all complex eigenvalues

correspond to trivial modes and hence the complex form of these eigenvalues is a

numerical artefact as discussed above. However, the quadrupole becomes linearly

unstable for M . 90, as indicated in Fig. 2 by dashed lines. In Fig. 4, we show

the results of our numerical stablility analysis for the quadrupole soliton Q with mass

M = 85. Interestingly, the unstable mode ê1 with κ1 ≈ −1.2i resembles the second-

order radial soliton R2, i.e., a hump with a (modulated, i.e. not rotationally symmetric)

ring.

4. Projected nonlinear dynamics

The typical dynamics for R2 (here for M = 200) as an initial condition is shown in

Fig. 5 a). To determine the shape of R2, we use the iterative solver mentioned above on

a grid containing 400×400 points, and we use the same grid for the actual propagation.
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Figure 3. Spectrum of the linear stability analysis (BdG equation) centered around

zero for a) the second-order radial soliton R2, and b) the quadrupole Q. Both solitons

have mass M = 200. The radial soliton R2 exhibits instabilities and the unstable

eigenmodes ê1(r), ê2(r) resemble quadrupoles [see two insets in a)]; the quadrupole

soliton Q is stable. For both solitons, the degeneracy of the trivial modes is lifted, a

numerical artefact due to the discretization of the eigenvalue problem Eq. (10). For

sake of readability, the insets in a) show the absolute square |ê(r)|2 = |δu(r)+ δv∗(r)|2

only.

Figure 4. Spectrum of the linear stability analysis (BdG equation) centered around

zero for the quadrupole Q with massM = 85. The unstable eigenmode ê1(r) resembles

the shape of R2 (see inset), but is of course not rotationally symmetric. Again, the

degeneracy of the trivial modes is lifted, a numerical artefact due to the discretization

of the eigenvalue problem Eq. (10). For sake of readability, the inset shows the absolute

square |ê(r)|2 = |δu(r) + δv∗(r)|2 only.

As we have seen in Sec. 3, the second-order radial soliton R2 is unstable over the whole

range of mass M and therefore any perturbation, that has a non-zero overlap with

the unstable internal modes ê1, ê2 will lead to an exponential growth of the latter.

Practically, the residual in numerical determination of R2 as well as the propagation

algorithm based on the Fourier split-step method [1] lead to inevitable numerical noise

when propagating and therefore trigger the instability without adding any additional

perturbation. In our case, however, we added the eigenmode ê1 as initial perturbation

with tiny amplitude ∼ 10−4 to the soliton R2 to control the breakup in a preferred

direction. For small times the dynamics is governed by the exponential growth of the

unstable internal mode ê1, while for later times the evolution becomes highly non-linear,

exhibiting oscillations between R2 [see inset (α) in Fig. 5 a)] and a state that resembles

the quadrupole soliton Q [see inset (β) in Fig. 5 a)] [26]. This state (β) we will call the
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Figure 5. a) Evolution of the peak-intensity of the second-order radial soliton R2 with

mass M = 200 (upper blue curve). As expected from the stability analysis Fig. 3 b),

the peak-intensity of the quadrupole soliton Q with same mass (lower red curve) is

constant during propagation. Figure b) shows the projected dynamics in the variables

U(t), S(t) [see Eq. (18)] for initial conditions R2 [blue curve, starting at (α)] and Q

[red curve, starting at (γ)]. The shape of the former curve hints at a homoclinic

connection, where the homoclinic point corresponds to R2 (α). Figure c) presents

the same dynamics as b), with an additional dimension given by the variable w [see

Eq. (19)]. In this three-dimensional projection, the distance between the quadrupole

Q (γ) and the ”turning point” (β) becomes apparent. For reasons of clarity, the 3D-

dynamics (blue) is additionally projected into (S,w)-plane (black), and the orbit of the

the quadrupole is again shown in red. The three insets show snapshots of the nonlinear

dynamics.

”turning point”. In the following we will examine in detail the origin and properties of

these oscillations.

4.1. Projection methods

Let us now introduce the projection method mentioned in the introduction [28,29] and

adopt it to our problem. To this end, we recall the scalar product of two complex

functions f and g, defined as

〈f, g〉 =

∫

f ∗(r)g(r)d2r. (14)

Obviously, the (unstable) internal modes êj of R2 introduced before [see Fig. 3] are not

orthogonal to their complex conjugate (stable) ê∗j (j = 1, 2) counterparts with respect

to this inner product. In other words, stable and unstable eigenspaces Es and Eu

spanned by eigenfunctions {ê∗1, ê
∗

2} resp. {ê1, ê2} are not mutually orthogonal. Thus,

straightforward projections onto êj and ê∗j do not help to elucidate the propagation

dynamics. To overcome this difficulty we introduce a set of functions which is

biorthogonal to êj , ê
∗

j using a Gram-Schmidt-like technique as follows. First, we define

ej⊥ = êj − 〈ê∗j , êj〉ê
∗

j , (15)

which is simply the projection of the unstable eigenmode êj onto the orthogonal

complement of the stable eigenmode ê∗j . Second, we note that (ej⊥)
∗ = ê∗j − 〈êj, ê

∗

j〉êj
corresponds to projection of the stable eigenmode ê∗j onto the orthogonal complement



Quasiperiodic oscillations and homoclinic orbits in the NNLS 9

Figure 6. Schematic sketch of the relation between êj, ê
∗

j , ej⊥, and (ej⊥)
∗. By

construction, ej⊥ is orthogonal to the stable eigenvector ê∗j , and (ej⊥)
∗ is orthogonal

to the unstable eigenvector êj . It is worth to notice that ej⊥ and (ej⊥)
∗ are not

orthogonal to each other. b) and c) show the modulus squared of the internal mode

ê1 and e1⊥, respectively.

of the unstable eigenmode êj. Then, it is easy to verify biorthogonality of ej⊥, (ej⊥)
∗

with respect to êj , ê
∗

j :

〈êj, (ej⊥)
∗〉 = 0〈êj, ej⊥〉 6= 0 (16)

In Fig. 6a) a schematic sketch of the relation between êj , ê
∗

j , ej⊥, and (ej⊥)
∗ is depicted,

and Fig. 6b-c) show ê1 and eq⊥ explicitly. It is worth to notice that 〈ej⊥, (ej⊥)
∗〉 6= 0,

i.e., ej⊥ and (ej⊥)
∗ are not orthogonal to each other.

In order to analyze the propagation dynamics of a solution ψ(x, t) of Eq. (1), we

introduce the quantities

Uj = 〈ej⊥, ψ〉, Sj = 〈(ej⊥)
∗, ψ〉. (17)

By construction, Uj is associated with the unstable eigenmode only (ej⊥ is orthogonal

to the stable one), while Sj is associated with the stable eigenmode only. Finally, for

R2, the two unstable eigenvectors ê1, ê2 are degenerate (due to rotational symmetry

about the origin), therefore we introduce the rotationally invariant projected variables

U(t) =

√

√

√

√

2
∑

j=1

|Uj |2 , S(t) =

√

√

√

√

2
∑

j=1

|Sj|2 . (18)

Then, any pair of wavefunctions ψ1(x, t) and ψ2(x, t) related through a rotation amounts

to the same value of U(t) and S(t). For a rigorous proof, see Appendix Appendix A.

4.2. Indication of homoclinic connections

Figure 5 b) illustrates the dynamics shown in Fig. 5 a) in the variables S(t), U(t)

introduced in Eq. (18). We clearly see the second-order radial soliton R2 (α) decaying

into a quadrupole-like state (β), the ”turning point”, and then coming back to R2. In

the vicinity of R2, the decay starts via the local unstable eigenspace Eu (i.e., U(t) > 0,

S(t) ≈ 0), and the revival ofR2 happens via the local stable eigenspace E
s (i.e., S(t) > 0,

U(t) ≈ 0). The fact that the system repeatedly returns (close) to its initial state R2 and

remains at this point some finite, non-constant time with (nearly) zero velocity, hints at

the existence of a homoclinic connection. A homoclinic connection is a solution which

is asymptotic to R2 both in the t→ ∞ and t→ −∞ limit. The time-span, in which the
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solution remains close to its initial state R2, i.e. the homoclinic point (α) in Fig. 5 b),

with practically zero velocity, corresponds to intervals with maximum (nearly) constant

peak-intensities in Fig. 5 a). Because we added a small perturbation in the direction

of the eigenmode ê1 to the initial condition R2, and the presence of numerical noise in

general, we do not see the exact homoclinic connection in our numerical simulations; as

the trajectory comes back towards R2 along Es, there is always a small perturbation

along the unstable eigenspace Eu and the trajectory leaves the neighborhood of R2

to return to it later on. We want to stress here that the existence of homoclinic

connections is by no means anticipated in general; our numerical results however indicate

the existence of such homoclinic connections and their persistence along a large range

of the mass M .

To further illustrate that the ”turning point” (β) is indeed well-separated from the

quadrupole soliton Q (γ), we introduce a third variable w by projecting the solitonic

wave function ψ onto the radial soliton R2,

w(t) =
|〈R2, ψ〉|

〈R2, R2〉
. (19)

Obviously, for ψ = R2 we find w = 1, while for ψ = Q for symmetry reasons we have

w = 0. Figure 5 c) shows the resulting projected dynamics on the variables U, S, w.

We clearly recognize similarities with Fig. 5 b), however, it becomes much more clear

how the solution evolves from its origin (α) and becomes much more “quadrupole-like”

in (β). In particular, the important separation between the quadrupole-like ”turning-

point” (β), which still maintains a nonzero projection on R2 and the quadrupole soliton

Q (γ) becomes evident.

4.3. Quasiperiodic motion

In the previous section, we argued that due to numerical limitations, we cannot actually

track the homoclinic orbit precisely, but what we find are trajectories that are very close

to the homoclinic connection. In the present section we will further probe the dynamical

importance of the homoclinic orbit by studying trajectories adjacent to it. In a sense,

the ”turning point” (β) of the homoclinic orbit is a state ”in between” R2 and Q. Here

we will investigate the dynamics of such ”in between” states obtained by perturbing the

homoclinic orbit at the ”turning point” (β). The perturbations we will consider are not

necessarily small and, as we will see, they typically lead to quasiperiodic oscillations.

A homoclinic orbit is obtained by (slightly) perturbing the initial wavefunction ofR2

in the direction of one of the unstable modes (e.g. of ê1) and integrating Eq. (1) forward

in time. Choosing the direction of the initial perturbation fixes the “orientation” of the

subsequent dynamics, and we can thus decompose the wavefunction at the turning point

[point (β) in Fig. 5] tt into a part parallel to the quadrupole soliton Q and a remainder

L

ψ(r, tt) = cQQ(r) + L(r), (20)
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where cQ = 〈Q,ψ(r, tt)〉/〈Q,Q〉 was introduced§. Perturbed wavefunctions ψΓ(r) are

then constructed through

ψ′

Γ(r) = cQQ(r) + ΓL(r) (21)

ψΓ =

√

〈ψ, ψ〉

〈ψ′

Γ, ψ
′

Γ〉
ψ′

Γ (22)

where Γ parametrizes mixed states between R2 andQ, and, in Eq. (22), the wavefunction

was normalized. Clearly, for Γ = 1, the homoclinic trajectory of R2 can be recovered,

whereas of Γ = 0, the quadrupole soliton is recovered. In the following the time evolution

of the function ψΓ will be studied.

Let us first consider the dynamics for Γ = 1.01 as shown in Fig. 7, which indicates

quasiperiodic behavior for small times (up to t ≃ 25). The time spend by this orbit close

to R2 is much smaller than for the homoclinic connection, of the previous section. This

becomes apparent when comparing the peak-intensity evolution in Fig. 7a) with the one

in Fig. 5a). In the (U, S, w) projection, this fact results in a smoother curve close to the

origin (whereas for a homoclinic connection a kink appears as R2 is approached, while

the “velocity” approaches zero). On the other hand, in the intensity representation,

Fig. 7c-h), the difference between homoclinic and quasiperiodic behavior is much harder

to discern. Propagation in Fig. 7a) and b) is shown until t = 35, when the dynamics

already deviates from the quasiperiodic orbit, indicating that the latter is unstable. This

behavior hints to the existence of some chaotic region in state-space, an issue that will

be studied elsewhere.

On the other hand, the dynamics for Γ = 0.99, shown in Fig. 8, appear again

quasiperiodic (see also the discussion of the Fourier spectra in Sec. 4.4), but in this case

the orbit appears stable, as it persists at least up to t = 1500. The qualitatively different

behaviour for Γ = 1.01 and Γ = 0.99 with respect to stability further corroborates the

importance of the homoclinic solution Γ = 1.00 (R2). In a certain sense, the homoclinic

orbit ”organizes” regions of stability in parameter space. However, the homoclinic

orbit should not be seen as a kind of ”boundary” between regions of different stability

behaviours, because it is just a one-dimensional line in the highly-dimensional parameter

space.

Let us finally consider the trajectory in Fig. 9 which is far away from both the

quadrupole soliton as well as from the ”turning point” (β) by letting Γ = 0.5. The

dynamics is still quasiperiodic and stable (at least up to t = 1500), but involves multiple

frequencies. Interestingly, the dominant frequency of oscillation with period T ≈ 2.6

can be related to a stable eigenvalue of the quadrupole soliton Q for M = 200. In the

(stable) eigenvalue spectrum of Q shown in Fig. 3b), the internal mode with κ ≈ 2.6

resembles a (modulated) ring with a hump (not shown). The duration of one period

T would then be given by T = 2π/κ ≈ 2.4, which is what we find when we slightly

§ More generally, if the direction of the breakup is arbitrary, one may generalize Eq. (20) by

decomposing ψ(tt) into two quadrupoles Q1, Q2, where Q1 is rotated by π/4 with respect to Q2,

via ψ(r, tt) = cQ1
Q1(r) + cQ2

Q2(r) + L(r).
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Figure 7. Evolution of ψΓ for Γ = 1.01 defined in Eq. (21). (a) shows the peak-

intensity, (b) the orbit in lower-dimensional S,U,w representation, and (c-h) snapshots

of the dynamics. The coloring is the same as in Fig. 5, where the blue curve again

represents the actual 3D dynamics and the black curve its projection on the (s, w)-

plane, and the red curve is the orbit of the quadrupole.

Figure 8. Evolution of ψΓ for Γ = 0.99 defined in Eq. (21). (a) shows the peak-

intensity, (b) the orbit in lower-dimensional S,U,w representation and (c-h) snapshots

of the dynamics. The coloring is the same as in Fig. 5, where the blue curve again

represents the actual 3D dynamics and the black curve its projection on the (s, w)-

plane, and the red curve is the orbit of the quadrupole.

perturb the quadrupole soliton Q by this mode. Moreover, for Γ = 0.1 (not shown) we

also find an oscillation with period T ≈ 2.4. In both case, the propagation dynamics

resemble the one shown in Fig. 9 for Γ = 0.5. Thus, even though for Γ = 0.5 we are

no longer in the region where perturbation analysis of the quadrupole soliton Q holds,

we still find qualitatively similar dynamics. We note that in the same system Eq. (1),

quasiperiodic nonlinear solutions (so-called azimuthons) linked to stable internal modes

of solitons were reported earlier [31, 32].

To sum up, we have identified a family of stable quasiperiodic solutions to Eq. (1),
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Figure 9. Evolution of ψΓ for Γ = 0.5 defined in Eq. (21). (a) shows the peak-

intensity, (b) the orbit in lower-dimensional S,U,w representation and (c-h) snapshots

of the dynamics. The coloring is the same as in Fig. 5, where the blue curve again

represents the actual 3D dynamics and the black curve its projection on the (s, w)-

plane, and the red curve is the orbit of the quadrupole.

starting from ψΓ given in Eq. (21) and 0 < Γ < 1. The two limiting solutions are the

stable quadrupole solitons Q (Γ = 0) and the homoclinic orbit linked to the unstable

radial solitons R2 (Γ = 1). We want to emphasize here that for lower masses, where the

quadrupole soliton Q becomes unstable (e.g., M = 85), we were not able to find stable

quasiperiodic solutions by the same construction.

4.4. Fourier spectrum

Further insight can be gained by considering the Fourier spectrum of the above

trajectories. Given a trajectory ψ(r, t) we compute the modulus of the Fourier transform

F of the wavefunction at a fixed point in space (in our case the origin r = 0):

f(ω) = |F(ψ(r = 0, t)|2. (23)

For a bright soliton solution of the form Eq. (4), one would expect f(ω) to comprise of

a single sharp peak at ω = λ. On the other hand, in the case of quasiperiodic dynamics

with vibration frequency Ω and propagation constant λ, one would expect peaks at

λ +mΩ, where m is integer. This is readily verified for the orbits with a = 0.99 and

a = 0.5, as can be seen in Fig. 10, where we see sharp peaks associated with these orbits.

On the other hand, there is no well defined periodicity associated with the homoclinic

orbit, since the time spent in the vicinity of R2 is in principle infinite. In practice,

this time is greatly affected by numerical noise and the spectrum appears continuous

[see Fig. 10a)]. Even if it is possible to associate a dominant frequency Ω with the

homoclinic orbit, f(ω) around Ω is much broader than in the case of quasiperiodic

orbits for Γ = 0.99 and Γ = 0.5 [see Fig. 10b) and c)]‖.

‖ A limitation on the spectral resolution for f(ω) for the homoclinic orbit appears due to the fact

that dynamics become unstable around t = 520. Here, we used the interval t = [0 : 500] to compute
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Thus, the Fourier spectra yield an additional indication of the qualitatively different

nature of the dynamics of Sec. 4.2 from the quasiperiodic motion of Sec. 4.3, providing

further support for the conjectured existence of an underlying homoclinic connection in

the former case.

5. Conclusions

In previous works, an oscillatory shape-transformation of modes in nonlocal media has

been observed [26, 27]. In this paper, we approached this phenomenon by means of

linear stability analysis and projection techniques borrowed from dynamical systems

studies of dissipative PDEs. By studying the linear stability of the quadrupole soliton

Q and the second-order radial soliton R2, we found that the former becomes linearly

stable for mass M & 90, whereas the latter remains linearly unstable for all masses.

The initial stage of the shape-transformations under consideration, i.e. the emergence

of a new state on top of R2, can be understood in terms of this linear instability, which

is triggered by the unavoidable numerical noise. However, the most striking feature of

the dynamics, i.e. the return to the initial state, is inherently nonlinear, as it occurs

only after the linear instability saturates. To study this phenomenon, we introduced a

low-dimensional representation of the dynamics, through a projection to dynamically

important states, which were constructed from the radial soliton R2 itself and its

unstable/stable eigenmodes. Projecting the time evolution of the wavefunction ψ(r, t)

(obtained by integrating the NLS) onto these states allows a visualization of oscillatory

shape-transformations in terms of trajectories, revealing that shape-transformations

can be interpreted as a homoclinic orbit leaving and re-approaching R2. Moreover,

in the neighborhood of this homoclinic orbit we found quasiperiodic solutions, which

for small enough perturbations resemble the homoclinic connection. This indicates

that the homoclinic connection provides a basic recurrence mechanism around which

quasiperiodic dynamics is organized, as is common in lower-dimensional dynamical

systems [33]. We were also able to construct and identify a whole family of stable

quasiperiodic orbits when the quadrupole soliton Q is stable.

The projection method introduced here allows a compact representation of the

dynamics, dual to the commonly used intensity plots. Moreover, in certain cases it

helps to uncover features of the dynamics that are not apparent in snapshots of the

intensity evolution. We expect that similar studies can be carried out for other states

exhibiting similar dynamics [26] and that our projection method (or similar extensions

of the methods of Refs. [28, 29]) could be applied to a variety of high- and infinite-

dimensional conservative systems.

the spectrum. Thus, compared to the other two spectra shown in Fig. 10, where the propagation was

performed until t = 1500, the spectral resolution is coarser by a factor of three.
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Figure 10. a) Spectrum f(ω) = |F(ψ(r = 0, t)|2 corresponding to the homoclinic

orbit Γ = 1.00 (red), and quasiperiodic orbits with Γ = 0.99 (black) and Γ = 0.5 (blue)

in logarithmic scale. b) Same information in linear scale. c)–e) show magnifications of

single peaks of b).
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Appendix

Appendix A. Rotational invariance of U(t) and S(t)

Here we prove that the quantities U(t), S(t) are rotationally invariant, i.e. they have the

same value if we substitute ψ(x, y, t) with R(θ)ψ(x, y, t) = ψ(x cos θ − y sin θ, x sin θ +

y cos θ, t), where R(θ) is an SO(2) rotation.

The eigenproblem Eq. (10) for the ring soliton R2 is rotationally symmetric and,

as a result, its internal modes ê1, ê2 transform according to

R(θ)êi =
2
∑

j=1

Dji(θ) êj , (A.1)

where D(θ) is a two-dimensional matrix-representation of SO(2). The explicit

representation D(θ) depends on the basis êj, but for our purposes it is sufficient to

show that we have a real representation. We begin by noting that the constraints of

orthogonality, DTD = 1, and unit determinant, det(D) = 1, lead to the following general

form

D(θ) =

(

α(θ) β(θ)

−β∗(θ) α∗(θ)

)

(A.2)

where the functions a(θ), β(θ) are related through

det (D(θ)) = |α(θ)|2 + |β(θ)|2 = 1. (A.3)

On the other hand, using ê2 = R(θ0)ê1, where θ0 is the angle that rotates ê1 onto ê2,

we can express all matrix elements Dji = 〈êj,R(θ)êi〉 in terms of D11,

D(θ) =

(

α(θ) α(θ + θ0)

α(θ − θ0) α(θ)

)

(A.4)
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Comparing with Eq. (A.2) we conclude that α(θ) = α∗(θ) and thus our representation

is real, and that α(θ − θ0) = −α(θ + θ0).¶

Using Eqs. (A.1)-(A.3) in definition Eq. (15), along with the relation 〈ê∗1, ê1〉 =

〈ê∗2, ê2〉, one can show that

R(θ)ei⊥ =
2
∑

j=1

Dji(θ) ej⊥ . (A.5)

Then, using Eqs. (A.2)-(A.5), it’s easy to show that

Ū2(t) ≡ |〈e1⊥,R(θ)ψ〉|2 + |〈e2⊥,R(θ)ψ〉|2

= |〈R(−θ)e1⊥, ψ〉|
2 + |〈R(−θ)e2⊥, ψ〉|

2

= |〈e1⊥, ψ〉|
2 + |〈e2⊥, ψ〉|

2

= U2(t) .

A similar proof holds for S(t).

¶ In our numerical results θ0 = π/4 and one can see that our representation is in fact equivalent to

D(θ) =

(

cos(2θ) − sin(2θ)

sin(2θ) cos(2θ)

)

.
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