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Abbreviations and Synonyms
SIS: Strange Invariant Set, an invariant set that has a fractal dimension.
UPO: Unstable Periodic Orbit.
cycle: a periodic orbit.
PDE: Partial Differential Equation.
ODE: Ordinary Differential Equation.
KSe: Kuramoto-Sivashinsky equation.
CGLe: Complex Ginzburg-Landau equation.
NSe: Navier-Stokes equation
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SUMMARY

We propose a dynamical systems approach to study of turbulence (spatiotemporal

chaos) based on the periodic orbit theory. The role of recurrent patterns and coherent

structures is emphasized in the description. After a brief review of the periodic orbit theory

in low dimensions, we discuss its possible application to the dynamics of spatially extended

systems. The discussion is three-fold. First, we introduce a novel variational scheme for

finding periodic orbits in general flows. Second, we check the periodic structures near the

first instability of the complex Ginzburg-Landau equation and talk about its role in pattern

formation. Third, we discuss the extensive numerical explorations that we have done to

the Kuramoto-Sivashinsky system in the chaotic regime, including searching for periodic

orbits, constructing symbolic dynamics and describing the chaotic invariant set in terms of

intrinsic coordinates. In these investigations, we hope to identify and rank the nonlinear

instabilities according to their relative importance.
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CHAPTER I

INTRODUCTION

If I have seen less far than other men it is because I have stood behind giants.
E. A. Spiegel

In this chapter we give a sketch of dynamical system theory and turbulence study from both
the historical development and methodology points of view. Since both subjects involve a
huge body of literature, they are touched in a way that will provide background for and
motivate our investigation later on. The bottomline is the effort that brings dynamical
system theory, especially the periodic orbit theory, to the study of 1-d spatiotemporal
chaos, a first step towards the real world 3-d turbulence.

1.1 From dynamical systems to periodic orbit theory

Dynamical system theory is a modern subject, but the basic elements emerged a century
ago. Today, both its concepts and methodology are under intensive development. Periodic
orbit theory is among the most powerful and promising of these developments. It combines
many techniques for dealing with dynamical systems.

1.1.1 Historical perspective

Since the invention of calculus by Newton and Leibniz, differential equations become a focus
of study, not only because of their dominant role in describing nature but also because of
their intrinsic complexity and beauty and paramount importance in the development of new
theories. Although more efforts are still being made to seek fundamental laws of nature
in extremely high energy regime, physicists may proudly say that they already hold the
laws necessary to explain and predict what happens in the physical world, except for events
taking place immediately after the Big Bang or under extreme conditions that are far beyond
the experience of the earthlings. Macroscopically, everything seems to be deterministic, just
like what Leibniz pointed out in Von dem Verhängnisse: “Given knowledge of present state
of the universe, we would see the future in the present as in a mirror.”

This is an enticing remark and people have been investigating its validity ever since
then. Mathematically, this is done by solving differential equations. The earliest attempts
were devoted to obtaining explicit expressions in terms of known functions or quadratures.
People had been devising various transformations and introducing and studying more and
more special functions. Still, in many cases, they could not get what they wanted and tended
to attribute the failure to their lack of cleverness in finding the appropriate transformation
that could settle the problem.

8



CHAPTER 1. INTRODUCTION 9

The French mathematician Henry Poincaré broke the religion and gave new life to the
old subject. In his study of celestial mechanics [202], Poincaré found that the equations of
motion of heavenly bodies were in general not integrable, i.e. no smooth transformation
existed to reduce the problem to a quadrature. In this sense, exact solutions of some
equations are not possible. Instead, Poincaré suggested the qualitative method to study
differential equations. An equation can be viewed as a dynamical system associated with
a phase space, the orbit structure of which gives the qualitative properties of solutions of
the equation. Geometrical and topological methods can then be invoked to study the phase
space itself. This led Poincaré to his discovery of many important theorems in the theory
of ordinary differential equations and chaos in celestial mechanics.

It was not until 1963 when Lorenz discovered chaotic strange attractor [162] in the at-
mospheric study that the chaotic dynamical systems started to attract attention of both
mathematicians and scientists in general. Lorenz found that the solution of a simple 3-d
dynamical system depends on the initial condition so sensitively that any small discrep-
ancy will grow quickly to cover the whole attractor and make the system behavior totally
unpredictable in the long run. This fact was later ascribed the term “butterfly effect”.
Researchers soon discovered that chaos is ubiquitous and accounts for various dynamical
phenomena.

From then on, dynamical systems become a hot research area and its content has
been extended from ordinary differential equations (ODEs) to partial differential equa-
tions (PDEs) [245, 113] and differentiable mappings [62, 41]. The development of digital
computer boosted the research greatly with new fields opened to scientists like cellular au-
tomata [273] and lattice field theory [44]. Today, research on dynamical systems is rapidly
expanding and rewarding in both theory and applications. It leads to many new concepts
and methods but raises even more problems and conjectures awaiting an answer. First we
review briefly the notions and techniques commonly used in dynamical sytem theory and
later use these concepts to illuminate the way in our study of turbulence.

1.1.2 Different approaches to dynamical systems

Analytical manipulation is dear to most scientists for solving differential equations. If
a differential equation is reducible to finitely many algebraic equations, even though the
algebraic equations may not be explicitly solvable, the problem is considered to be solved
since the global structure of solutions is known in principle and specific solutions can be
calculated to any accuracy in the whole domain of definition [134, 137, 247, 123]. n−1 first
integrals yield a full solution of an n-dimensional system. Although the direct integration
or series expansion is most effective to linear systems, various technique have been devised
to test the integrability of nonlinear equations, like the Painléve [134, 123, 270, 268, 43] and
inverse scattering method [1]. Generally, integrability only exist in highly simplied models,
but its discussion providing the starting point for studying more complex behavior.

The qualitative theory that combines algebra, analysis and geometry is the main tool
to study the behavior of general differential equations. We care most about the long-
term dynamics which concentrates on a small subset of the phase space in a dissipative
system [199, 168]. To understand the asymptotic behavior of a system, we only need to
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CHAPTER 1. INTRODUCTION 10

identify the subset, and study the dynamics around it [106, 271, 110, 111]. The Banach’s
contraction mapping principle [112, 118, 226] plays a central role in discussing the existence
and analytical properties of solutions. It identifies the dominant features and orders the
approximates to the solutions, with fine corrections introduced successively. We will use
the technique to analyze the solutions of the complex Ginzburg-Landau equation (CGLe)
in chapter 4.

In all this study, symmetry considerations and Lie group theory have been gaining more
and more attention [196, 1, 186, 154]. Interestingly, sometimes the precise form of the
differential equation is not important for interpreting desired properties of a dynamical
system. All that we need to know is the symmetry group associated with the system [100,
14, 45]. The continuity condition of solutions imposes severe constraints on the global
topology.Through the construction of certain topological invariants, much can be deduced
about the structure of the phase space [42, 180, 218, 183, 96].

In dissipative chaotic systems, the complicated asymptotic dynamics takes place on a
compact subset which is not a manifold but has a fractal structure [162, 165], called a
strange invariant set (SIS). Various fractal dimensions are introduced to characterize the
size and geometric layout of the SIS [73, 223], and Chaoticity of the dynamics is shown by
the biggest Lyapunov exponent [106, 223]. Statistical behavior of solutions depends heavily
on the ergodic or mixing property of the system, the discussion of which constitutes a lively
research direction itself [227]. The statistical properties are also investigated by introducing
linear opearators, such as the Perron-Frobenius operator, and by studying their spectra.
We will see how the periodic orbit theory is used to calculate the spectra later on.

The above program is carried out analytically only in a small number of systems. In
most cases, numerical calculations are needed to assist analysis. Nowadays, with increasing
power of digital computers, it is possible to carry out direct numerical simulation of more
and more complex nonlinear problems. Numerical computation has become an indispens-
able tool for the exploration and application of dynamical systems. The computer generated
figures provide intuitive pictures and stimulate inspiration for developing analytical meth-
ods [277]. Furthermore, numerical calculation with controlled error is an important tool for
computer-assisted proofs of theorems [179]. Numerical procedures are also used to produce
approximate invariant manifolds [126, 84, 26] which are used as the framework for qualita-
tive discussion of the long-time behavior. Apart from equilibrium points, the simplest and
most easily obtainable objects of a chaotic system are unstable periodic orbits (UPOs).

1.2 Periodic orbits: theory and numerics

One of the earliest observations of a dynamical system made by human beings is the periodic
motion, e.g., the circular motion of the heavenly bodies. Next discovery was the quasi-
periodic motion, motion in which an orbit never retraces itself exactly but is decomposable to
a finite set of components with incommensurate frequencies. It was natural to think that the
most general form of bounded motion is the quasi-periodic oneb but the discovery of chaos
shattered that belief. The chaotic flow has infinitely many UPOs with incommensurate
frequencies, and its sensitive dependence on initial conditions precludes the possibility of
quasi-periodic motion, even with infinitely many frequencies. It is a new form of motion,
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CHAPTER 1. INTRODUCTION 11

with a distinct nature. Today, it is believed that chaos is the rule in general dynamical
systems, and considerable amount of research efforts are devoted to it.

Although the set of UPOs has a zero Lesbegue measure on a SIS, its central importance
was realized already by Poincaré [202]. In the early sixties, in order to explain the generation
of a SIS, Smale [230] proposed the horseshoe mechanism. Loosely speaking, the SIS results
from local stretching and squeezing and global bending and squashing. A SIS is usually a
fractal set which is self-similar and covered densely by UPOs. If it is compact, maximal,
hyperbolic and indecomposable [106], a Markov partition exists and a finite symbolic set
could be defined such that the dynamics on the SIS is topologically equivalent to a subshift
of finite type in the symbol space, and every periodic sequence corresponds to a UPO [106].
In general, the SIS has a much more complicated structure and infinitely many symbols are
needed to characterize the set and the dynamics.

1.2.0.1 Dynamics and UPOs

The creation or destruction of UPOs under parameter changes indicates bifurcations. How
is a periodic orbit generated? In general, there are two ways - through a local bifurcation or
through a global bifurcation. Locally, a Hopf bifurcation is the commonly encountered way
of producing a periodic orbit. When a complex pair of eigenvalues of the Jacobian matrix
of a fixed point cross transversely the imaginary axis, Hopf bifurcation takes place, and the
resulting periodic orbit inherits the stability of the fixed point [106]. Globally, a homoclinic
bifurcation is frequently associated with appearance or disappearance of UPOs. Horseshoes
are often generated by a homoclinic explosion like in the Lorenz system [232, 163], a special
form of the homoclinic bifurcation, which results in a infinity of UPOs. Global saddle-node
or pitchfork bifurcation are also common for the annhilation or creation of one or two UPOs.

The UPOs form the skeleton of a SIS [50, 49]. The closure of the set of UPOs is the SIS
itself and the dynamics on it is a walk through the space of these UPOs. Various physically
interesting quantities, like topological entropy, fractal dimension, correlation length and
escape rate, can be calculated via spectral determinants or dynamical zeta functions [50],
expressed as a convergent sum over the set of UPOs. If a complete symbolic dynamics exists,
cycle expansions [9] give exponential (or super-exponential) convergence rate relative to the
topological lengths of the UPOs.

We can give a geometrical picture of the role played by the UPOs in the SIS. Every
UPO has a linearized neighborhood in which the dynamics is well approximated. Phase
space is then partitioned into these neighborhoods. The more UPOs we have, the finer
is the partition, the more accurate is the representation. In a hyperbolic system with
complete symbolic dynamics, long orbits are shadowed by short ones, leaving only fast
decaying curvature contributions. Cycle expansions on spectral determinants (dynamical
zeta functions) are a systematic way of piecing the information together for calculating
dynamical averages on a SIS.
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CHAPTER 1. INTRODUCTION 12

1.2.0.2 UPOs and numerics

The very existence of UPOs tells us much about the dynamics. Sometimes, several shortest
UPOs are enough to set up a frame for discussing qualitive properties of a dynamical
system [50, 141]. If all the UPOs up to a given length are found, we may consider using
trace formula to evaluate physical averages. It is, therefore, a crucial part of the periodic
orbit theory to locate the requested UPOs with given accuracy. Analytical methods have
very limited use in this context, so numerical integration is the only choice. Due to the
sensitive dependence of solutions on initial conditions in a chaotic dynamical system, it is
impossible to follow a typical orbit for arbitrarily long time with reasonable accuracy. To
locate a UPO, however, requires only calculation on a finite orbit segment, which can be
done with great accuracy [262]. If a UPO is hyperbolic, then it is the maximal invariant
set in a small neighborhood of itself and persists under small perturbations, being either
small changes of system parameters or numerical noise. So, a hyperbolic UPO is robust
and numerically obtainable.

We are mainly concerned with UPOs on a SIS, and many different numerical methods
have been developed to locate them. Basically, finding periodic orbits is a boundary value
problem on the time axis. If a Poincaré section is chosen in phase space, simple shooting
is often used for searching the shortest UPOs. In very chaotic system or to locate long
UPOs, multipoint shooting is more stable [50, 238]. Variational methods [156, 148, 119] are
useful for complicated or high-dimensional systems, which put a guessed loop in the phase
space and then drive it to the desired periodic orbit by some extremization principle. To
find periodic orbits in the discrete time series data from an experiment, time series analysis
and embeddings are needed. In application of all these methods, it is very important to
establish symbolic dynamics. In many systems, short UPOs can be found directly and used
to establish symbolic dynamics which gives an upper bound of the number of the UPOs
with a given length and helps predict the location of the longer orbits. Ideally no orbit is
missing or over-counting. The construction is always possible if a Poincaré map of the SIS
is hyperbolic.

1.3 Turbulence:brief notes

1.3.1 Historical perspective

Turbulence has long been one of the natural phenomena which receive most attention of the
humankind. From soft breezes to violent hurricane, from boiling water to tsunami, from
colorful chemical oscillation to magnificent solar magnetic explosion, everywhere, turbulence
is present and has great influence on our life. It is among the most studied subjects but
still quite poorly understood because of its extremely rich and complicated behavior, even
though the underlying natural laws are clear. Navier-Stokes equation, for example, is a
sufficiently good model for the fluid motion in many cases, and is regarded as containing
necessary ingredients to explain most turbulent behavior of fluids. But lack of mathematical
tools prevents us from fully understanding the nature of its solutions.
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CHAPTER 1. INTRODUCTION 13

With the accumulation of mathematical techniques and experimental facts, study on tur-
bulence made steady progress, though somewhat slowly. Twilight shone from Kolmogorov’s
work in 1941 [146, 88], a classic in establishing phenomelogical models of turbulence. In
addition to the Navier-Stokes equation, two universal assumptions were proposed to explain
the experimentally observed two-thirds law and energy dissipation law. Landau questioned
the universality and later proposed that turbulence is generated by sequence of Hopf bi-
furcations which activate infinitely many degrees of freedom with incommensurate frequen-
cies [158]. Although the proposal was known to be incorrect later, Landau’s emphasis on
the investigation of the origin of turbulence is appreciated by many scientists.

After Lorenz’s rediscovery of chaos in 1963, the stochastic motion in deterministic sys-
tems was recognized and studied. In 1971, Ruelle and Takens showed that quasi-periodic
motion is not generic in general vector fields and the chaotic (strange) attractors occur more
often than the high-dimensional tori. The argument was strong and thus made many peo-
ple believe that chaotic dynamics is somehow closely related to the creation of turbulence.
After that, different routes to turbulence were proposed and tested [88, 116, 48].

Experimentally, well-controlled fluid systems were devised and studied to check the var-
ious instabilities that lead to sequentially more complex motion. The discovery of coherent
structures claimed the inadequacy of statistical description. Large-scale correlation is an
significant part of turbulent motion in real fluids. Theoretically, models of various complex-
ity are constructed and investigated in order to account for experimental observations and
to extract essential elements of turbulence dynamics.

Nowadays, turbulence has become a general concept, familiar to many scientists in
different areas. If a system possesses infinitely many degrees of freedom and the couplings
between them are nonlinear, turbulence is likely to occur when control parameters cross
certain critical values. Chemical turbulence, acoustic turbulence, optical turbulence and so
on are named and studied, and new experimental techniques continue to be developed to
test theoretical models and provide facts of turbulence. In extended systems, the study of
turbulence is just as important as the study of regular motion due to its universality and
genericity.

1.3.2 Main lines of approach

Kolmogorov’s statistical model incorporates the symmetry consideration of the fluid system
and is based on a multi-scale analysis: the average flow induces pulsations with largest size.
Energy is transmitted to smaller and smaller scales in a hierarchical order via nonlinear
interaction between modes of different scales. As a consequence, Small pulsations move in
the background created by larger ones and have a smaller characteristic time. On the other
hand, small scale motions induce extra dissipation and diffusion in an averaged way to the
motion in large scales. The inspiration and the ideas contained in this model still influence
current turbulence research [231, 89].

The ever improving experimental techniques keep revealing new quantitative features
of turbulence which is a source of puzzles as well as inspirations. More subtle modeling
is needed to give detailed description of turbulence and explain the observed experimental

Y. Lan - PhD thesis - version 0.8 - May 18, 2004 intro - 23mar2004, printed May 24, 2004



CHAPTER 1. INTRODUCTION 14

facts, like various coherent structures. Recently Numerical simulations achieve considerable
success as the digital computer acquires stunning computing power. It is possible to directly
evolve Navier-Stokes equation and do various manipulations that cannot be done in an
experiment. But physical insights and physical consideration are still needed to make sense
of the numerical calculation.

On the other hand, the development of dynamical system theory opened the door for
establishing rigorous tools for investigating turbulence. In a finite system, At the onset of
spatiotemporal complexity, a series of low-dimensional bifurcations take place which destroy
the symmetries of the system steadily [124]. With more and more modes aroused, the spatial
structure of the system becomes more and more complicated until the system reaches the
spatiotemporal chaotic regime where the dynamics can be roughly viewed as a replica of
building blocks juxposed to pave the spatial stretch and all the symmetries are restored in
a statistical sense.

Various reduction schemes are used in the dymcial systems approach. P. Holmes et al.
noticed that the spatial interaction is local and try to build local models to account for the
coherent structures [124]. From the consideration of different space time scales, much can
be achieved through the construction of amplitude or phase equations [256, 45, 187, 152].
About half a century ago, E. Hopf remarked that the turbulence motion in a finite space
region really concentrates on a finite-dimensional manifold in the infinite-dimensional phase
space of an extended system [129]. To embrace the idea, the concept of inertial manild
is proposed and applied as a extension of the center manifold. On this manifold, the
original partial differential equation (PDE) is equivalent to a finite set of ordinary differential
equations (ODE).

Most theoretical investigation is based on the NSe which is a sufficiently good model of
real fluid turbulence. The NSe has a bunch of symmetries [88], including space and time
translational invariance, reflection and scaling invariance. If any model of turbulence is
proposed, these symmetries should in a way be accomodated. Except for possible external
force, a fluid particle receives action from its neighbors only, which means the coupling
term in the NSe has a local nature. All the couplings between fluid particles have the same
functional form and are the source of turbulent motion. So, as a dynamical system the NSe
has many specific features. Similar is true for most other spatially extended systems. Their
solutions should therefore exhibit these internal features. The coherent structures observed
in many experiments and numerical simulations are characteristic of solutions and should
be explainable from the structures of equations of motion. We will consider the coherent
structures both from their origin and from their roles in the formation of spatiotemporal
chaos.

1.4 Periodic orbit theory on spatiotemporal chaos

Practically, if the existence of solutions of the NSe is taken for granted, convenient function
spaces can be chosen, e.g., the set of smooth periodic functions are good for our investiga-
tions. With the chosen basis, the NSe converts to a countable set of coupled ODEs. The
task is then to study to what extent the finite(low)-dimensional dynamical system theory,
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CHAPTER 1. INTRODUCTION 15

can be applied to infinite-dimensional systems, and what happens during the transition to
a turbulent state.

There is strong indication that a finite-dimensional phase space is enough to give rather
complete description of the fluid dynamics. In either numerical simulations or experimental
observations, every so often, we catch a glimse of familiar patterns in the ever-evolving
turbulent systems. These patterns are the aforementioned coherent structures and more
importantly the dynamics is recurrent like a walk through a finite set of spatial patterns.
In analogy to low-dimensional chaotic system, the typical motion follows a UPO for a while
and then another one, then the next...Mathematically, we always deal with a finite set of
excited modes and the rest infinitely many modes are entrained by these active ones. In
the presence of viscous dissipation, a typical phase point is often attracted to a strange set
of very low dimension. For finite resolution, a finite number of periodic orbits are sufficient
to approximate the strange set and the asymptotic dynamics in the whole phase space.

The primary goal of this thesis is to identify the coherent structures and investigate
their dynamics from a periodic theory point of view. Analytically, we studied the first
instability of the CGLe and proved the existence of modulated amplitude waves (MAWs)
which constitute basic building blocks for later spatiotemporal dynamics. We analyzed the
structure of steady solutions of the KSe, identified the most importane ones and emphasized
their role in organing the phase space dynamics. Numerically, we devised a novel variational
technique to locate all the short UPOs in a spatiotemporally chaotic system. Using the set
of UPOs, we systematically reconstructed the strange set, deduced the symbolic dynamics
and thus calculated statistical averages of various physical quantities. Though the strange
set is usually nonhyperbolic, with infinite bifurcations taking place even for the slightest
changes of parameter values, the coarse structure of the strange set changes continuously.
It is well shadowed by the finite set of periodic orbits the study of which will shed light on
the wake of turbulence.

Until now, work has been concentrating on the simplest models which exhibit spatiotem-
poral chaos, the complex Ginzburg-Landau equation (CGLe) and Kuramoto-Sivashinsky
equation (KSe). As a starting try, all the calculation done here may well be view as prelim-
inary, but the techniques and intuition developed will hopefully be extended to real world
systems like the NSe, or other field equations.
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CHAPTER II

PERIODIC ORBIT THEORY

The theme of the whole thesis is the periodic orbit theory applied to the study of spa-
tiotemporal dynamics of extended systems. Even in low-dimensional dynamical systems,
the theory is still under development although the main ingredients are ready. In this chap-
ter, we will review the theory and point out open problems (obstacles in applications) in
the end. After reviewing the basic properties and symbolic dynamics description of a dy-
namical system in sect. 2.1, we discuss the space and time averages and introduce operator
formulation of invariant measures in sect. 2.2. In sect. 2.3, the main object in the periodic
orbit theory - trace formula, spectral determinant, dynamical zeta functions are derived and
their physical interpretation is given. The calculation of physical averages through cycle
expansions is discussed in sect. 2.4. Finally, we point out the difficulties and open problems
of the periodic orbit theory in sect. 2.5. A comprehensive presentation of the theory is given
in [50].

2.1 Dynamical systems

A deterministic dynamical system maps a point in its phase space M to another point in a
discrete (maps) or continous (flows) manner. In this dissertation, we restrict our attention
to the dynamical systems with the phase space M being Euclidean, i.e., M ⊂ R

n , n ∈ N.
Let x ∈ M, then the phase space dynamics consists of a family of continuous mappings

f t : x → f t(x) , t ∈ S , (1)

where S ⊆ N or R is the domain of the evolution parameter t, satisfying: (1)f0(x) =
x ; (2)f t2◦f t1(x) = f t1+t2(x) ,∀t1 , t2 > 0. If these mappings are homeomorphisms, then they
form a group; otherwise, a semigroup. An invariant set V ⊂ M is a set that satisfies f t(V ) =
V , ∀t. An orbit is a subset of M defined as ι = {f t(x) ∈ M : t ∈ S , for any fixed x ∈ M}.
An orbit is an invariant set and a general invariant set is a collection of orbits.

In chaotic dynamical systems, sensitive dependence on initial conditions precludes the
long-time prediction of system behavior, and any open set on the SIS spreads over the whole
SIS in finite time. If the dynamics takes place in a compact subset (the SIS) of the phase
space, then there is an upper bound over distances between any two points on the SIS, so
trajectories have to bend back and mix with each other. Local instability and global mixing
creates very complex dynamics. For example, a (typical) point can visit neighborhood
of any point infinitely many times. We say that the dynamics is topologically transitive.
Specifically, a point can visit its own neighborhood arbitrarily often, which is the recurrence
property proved first in Hamiltonian systems by Poincaré. It is natural to ask whether there
are points whose orbit actually comes back to itself exactly and forms a periodic orbit. For
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Figure 1: The Ulam map f(x) = 4x(1 − x) on the unit interval. (a) The graph of the map with its
symbolic regions denoted by 0 and 1. (b) The invariant measure: analytic result is depicted by the solid
line; numerical result by the dots.

a typical chaotic system, there are infinitely many such orbits (closing lemma [206]). They
cover the SIS densely. A good knowledge of their properties reveals the system dynamics
in a hierarchical way.

Though in a chaotic system, the asymptotic dynamics is complicated and unpredictable
in the long run, symbolic dynamics is a good description at the global level which encodes
all the possible orbits and their topological layout. It is an invariant characterization of the
dynamics, independent of the underlying coordinate system. To build a symbolic dynamics,
we partition the SIS into units and assign a symbol to each partitioning unit such that
a trajectory is uniquely associated with a symbol sequence called itinerary according to
the units it visited. A good partition insures that two different trajectories have distinct
itineraries. It is possible that no trajectory corresponds to certain symbol sequence, and
we then say that there exist pruning rules. A phase point corresponds to the itinerary
of its trajectory and the dynamics is described by a shift of the symbols. Periodic orbits
correspond to itineraries with repeating symbol blocks. This symbolic dynamics description
of a chaotic system is extremely convenient and reveals much about the dynamics of the
original system although it takes time and effort to find a good partition in a general
dynamical system.

Consider the Ulam map

f(x) = 4x(1 − x) , x ∈ [0, 1] . (2)

This is a quadratic map with the critical point sitting at x = 0.5. The non-wandering
set is the whole unit interval and the symbolic dynamics of the system is a full shift on
two symbols, say Σ = {0, 1}, with 0 corresponding to the subinterval on the left and 1 to
that on the right of the critical point x = 1

2 , respectively (see figure ??). According to its
itinerary, any orbit correponds uniquely to an infinite sequence s1s2s3 · · · , with si ∈ Σ, and
vice versa. A periodic orbit is given by a periodic sequence. For example, the period two
orbit in figure ??(a) is described by the sequence 010101 · · · , which may be denoted by 01.
The topological length of this orbit is 2, as its symbol sequence is a repeat of two symbols.
A prime cycle is a periodic orbit that can not be decomposed to shorter ones. For example,
0101 is not a prime cycle as it is a repeat of 01.

In applications, often instead of the detailed dynamics averages of physical quantities
are the only thing we care about. Due to the vastly different time scales, our observation
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CHAPTER 2. PERIODIC ORBIT THEORY 18

or measurement is usually time average of the physical quantity under check. In gas dy-
namics, the pressure is just the average collision force exerted by the gas molecules on the
container wall. In quantum mechanics, the only measurable quantities are the averages of
observables. In fluid mechanics, a good many statistical quantities are used to characterize
a turbulent flow. They are determined by the system control parameters and reproducible
in observations. Usually, statistical models are proposed to explain the experimental ob-
servations. Though they capture ingradients of essential dynamics, their extra assumptions
may severely restrict the applicability. In the following, we discuss how to use periodic
orbits to do these calculations from first principles.

2.2 Physical averages in a dynamical system

2.2.1 Space, time averages and ergodicity

In classical or semiclassical mechanics, observables are (scalar, vector or tensor) functions
a(x) defined in M. The integrated quantity At(x0) on an orbit segment is defined as

At(x0) =
t∑

k=0

a(fk(x0)) . (3)

This limit may not exist for all x0 ∈ M, but it does exist for almost all x0 as the distribution
of orbits from these points approach a definite limit. For flows the summation is replaced
by integration over time. The time average of the observable a along a trajectory is

ā(x0) = lim
t→∞

1
t
At(x0) . (4)

Specifically, on a periodic orbit p, we may define

Ap = ATp(x0) , ap =
1
Tp

Ap ,

where Tp is the period of the periodic orbit. Notice that Ap , ap does not depend on the
starting point x0 on the periodic orbit. The space average of a(x) on a ensemble of phase
points is

〈a(t)〉 =
∫
M

dx ω(x)a(f t(x)) , (5)

where ω(x) is the initial distribution of these phase points and normalized such that∫
M

dx ω(x) = 1 .

If the dynamics is ergodic, then for almost all x0 ∈ M, ā(x0) exists and equals to a constant
value (independent of x0). This is easily understood from a symbolic dynamics point of view.
Suppose that the phase space is partitioned into m regions and the dynamics is a full shift
of m symbols. in each region the observable has a value, so A is determined by the number
(frequency) of each symbol but not their order in the symbol sequence of a trajectory. The
itineraries with the m symbols occuring almost equally frequently dominate, which means
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CHAPTER 2. PERIODIC ORBIT THEORY 19

that the corresponding phase points dominate and will have equal ā. To exclude the effect
of the zero-measure bad set, we may take the space average of the time average and thus
define the expectation value

〈a〉 = lim
t→∞

1
t

∫
M

dx At(x) . (6)

The space-time averaging is linear functional of the observale, since 〈c1a + c2b〉 = c1〈a〉 +
c2〈b〉. If the system is ergodic [227, 73], there exists a measure ρ(x) defined on M such that

〈a〉 =
∫
M

dx ρ(x)a(x) . (7)

In this way, the typical time average becomes a space average with a particular weight
function ρ(x). In a chaotic system, ρ(x) is usually a non-differentiable function supported
on a fractal set. The example given in figure 1 is an exceptional case where ρ(x) is a smooth
function defined on (0, 1),

ρ(x) =
1

πx
√

1 − x
. (8)

The profile of (8) is depicted in figure 1(b) in solid line. The dots in the graph represent
the approximation of ρ(x) obtained from numerical evolution of a typical phase point for
105 steps. From (8), it is easy to get the moments

〈xn〉 =
B(n + 1/2, 1/2)

π
=

(2n − 1)!!
2nn!

,

where B(n + 1/2, 1/2) is the Beta function. In particular, we get 〈x〉 = 1/2 , 〈x2〉 = 3/8.

Though the existence of ρ(x) is easy to prove, its exact form is hard to obtain. Like in
equilibrium statistical thermodynamics, we can conveniently define a generating functional
such that all the statistical information of a particular dynamical variable is contained in
it. Let’s define

s(β) = lim
t→∞

1
t

ln〈eβAt〉 , (9)

where β is an auxilliary variable and the ln is used to normalize the measure. The averaged
quantity expβAt is multiplicative along an orbit, which is essential to the formulation below.
Due to ergodicity, any smooth measure can be used in (9) to take the space average. For
example, the uniform distribution will be used later. It is easy to see that

〈a〉 = lim
t→∞

1
t
〈At〉 =

∂s

∂β

∣∣∣∣
β=0

〈a2〉 − 〈a〉2 = lim
t→∞

1
t2

(〈AtAt〉 − 〈At〉〈At〉) =
∂2s

∂β2

∣∣∣∣
β=0

. (10)

Any moment of a is obtainable by taking derivatives of S.

2.2.2 Evolution operators and invariant measures

In the dynamical system (1), a time evolution operator Lt can be defined for continuous
function h(x) on M,

Lt ◦ h(x) =
∫
M

dy δ(x − f t(y))eβAt
h(y) . (11)
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CHAPTER 2. PERIODIC ORBIT THEORY 20

Physically, the evolution can be viewed as a passive transport of some quantity h(x) attached
to each phase point. The function

Lt(x, y) = δ(x − f t(y))eβAt
(12)

is called the kernel of the evolution operator Lt. It depends on the integrated quantity
At. The delta function collects points y which evolves to x in time t. The usual evolution
operator depends only on the flow, for example, when β = 0, Lt(x, y) reduces to the familiar
Frobenius-Perron kernel. Note that the evolution operator has semigroup property for a
general flow, i.e.,

Lt1 ◦ Lt2 ◦ h(x) = Lt1+t2 ◦ h(x) , t1, t2 ∈ R
+ .

If the original dynamics f t is a diffeomorphism, then the above relation holds for any
t1, t2 ∈ R and thus the set of operators Lt form an Abelian group.

In a closed system, the Frobenius-Perron operator Lt|β=0 does not change the average
of the function h(x), since∫

M
dx Lt|β=0 ◦ h(x) =

∫
M

dx

∫
M

dy δ(x − f t(y))h(y) =
∫
M

dy h(y) .

Furthermore, if the system is autonomous, for any smooth function a(x), 〈a〉 is independent
of time, so ρ(x) is invariant in time,

Lt|β=0 ◦ ρ(x) = ρ(x) . (13)

We call ρ(x) an invariant measure of dynamical system (1). For the Ulam map, (13) becomes

ρ(1+
√

1−x
2 )

4
√

1 − x
+

ρ(1−√
1−x

2 )
4
√

1 − x
= ρ(x) .

It is a functional equation which can be used to determine ρ(x) if it is unknown. In a chaotic
system, infinitely many invariant measures can exist. For example, the delta measure defined
on a compact invariant set is an invariant measure. ρ(x) discussed above is the one most
relevant to the dynamics. Any smooth distributions will evolve asymptotically to ρ(x). If
a typical phase point is evolved for a long time on the computer, the phase space density
of the points on its trajectory is proportional to ρ(x). In the following, we will analyze the
invariant measure ρ(x) in the neighborhood of any periodic orbit and use the trace formula
to piece together the useful information. The ensuing spectral determinants and dynamical
zeta functions then provide basis for fast-convergent calculations - cycle expansions.

2.3 Trace formula, spectral determinant and dynamical zeta
function

2.3.1 Trace formula

In terms of the evolution operator, we may write

〈eβAt〉 = 〈Lt ◦ I(x)〉 ,
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where I(x) ≡ 1 is the identity function. According to (6), we mainly care about the long
(infinite) time behavior of Lt. In view of the semi-group property and linearity of Lt, it
is clear that the asymptotic state is dominated by the eigenstate of the “differential” of
Lt that has the maximum eigenvalue. Under quite general assumptions, we may take the
ansatz (for flows)

Lt = etA ,

where A is called the generator of the evolution operator Lt and is the “differential” just
mentioned. It is a linear operator independent of t and its spectrum determines the property
of Lt. Why is it so? Let’s suppose that the eigenvalues and the eigenfunction of A are
ordered as following (assume no degeneracy exists),

s0 , s1 , s2 , · · ·
φ0 , φ1 , φ2 , · · ·

where Re(sk) > Re(sk+1), such that A◦φk = skφk. If we expand the identity function I(x)
in terms of the eigenfunctions

I =
∑

k

Ikφk ,

then
〈eβ At〉 = 〈Lt ◦ I〉 = 〈

∑
k

IKet skφk〉 . (14)

So, 〈eβ At〉 ∼ et s0 , for t → ∞. The average is dominated by the maximum eigenvalue in
the large time limit. In the following, we will study how to extract the spectrum of A from
the set of periodic orbits. We will derive the formula for maps and write out the formula
for flows directly.

For maps, we may write L = exp(A). The notation is consistent as L = L1. In analogy
to the matrix calculation, the spectrum of the linear operator L is determined by solving
the determinant equation det (1 − zL) = 0. But how to compute the determinant of an
operator? Note the following identity in the matrix algebra

det (M) = exp(tr ln M) , (15)

where M is an arbitrary square matrix and tr takes the trace of a matrix. Using (15), we
can write

det (1− zL) = exp(tr ln(1− zL))

= exp(−
∞∑

k=1

zk

k
tr(Lk)) , (16)

where we have used the Taylor expansion of the logrithmic function. This determinant is
called spectral determinant as its zeros give the spectrum of the operator. So, in order to
get the spectrum of the operator L, we only need to calculate the trace tr(Lk)) ,∀k ∈ N. If
we know the spectrum {sm}m∈Z+ of L, then the trace

tr(Lk) =
∑
m

eksm ∼ eks0 , k → ∞ ,

increases exponentially if s0 is the largest eigenvalue of L.

Y. Lan - PhD thesis - version 0.8 - May 18, 2004 period - 6apr2004, printed May 24, 2004



CHAPTER 2. PERIODIC ORBIT THEORY 22

The trace of an operator is defined in analogy with the marix case as the sum of diagonal
terms, i.e.,

tr(Lk) =
∫
M

dx

∫
M

dz δ(z − x)
∫
M

dy δ(z − fk(y))eβAk
δ(y − x)

=
∫
M

dx δ(x − fk(x))eβAk
. (17)

Here, delta functions are used as the basis functions to calculate the trace. Sometimes, i.e.,
like in the intermittency case this is not well defined as we we will explain. We may now
directly integrate the delta function to get the trace. Notice that every time fk(x) = x,
i.e., x is a periodic point of period k, the delta function contributes a term. So, we write
the trace as a summation over periodic points

tr(Lk) =
∑

fk(xi)=xi

eβAk(xi)

|det (1 − Jk(xi))| , (18)

where Jk(xi) is the Jacobian matrix of fk evaluated at xi. Notice that (18) only holds
for hyperbolic periodic orbits. If a neutral direction exists for the Jacobian, then |det (1 −
Jk(xi))| = 0 and (18) has a zero denominator. This intermittency case even invalidates
(17) since the delta function is not defined at degenerate zeros of function x− fk(x). With
special care, the trace of the evolution operator is still computable but found to depend on
powers of k. [10] We may now write the following generating functional for the trace

tr
zL

1 − zL =
∞∑

k=1

zktr(Lk)

=
∑

p

np

∞∑
r=1

zrnp
eβAp

|det (1 − Jr
p )| , (19)

where the summation has been decomposed into summation over prime cycles p and their
repeats. Ap, Jp are the integrated quantity and the Jacobian along the prime cycle p, and
Ap, det (1 − Jk(xi)) depend only on the cycle but not the starting point on the cycle. (19)
may be viewed as a generating function for the trace tr(Lk). The spectral determinant is
now easily calculated to be

det (1− zL) = exp

[
−

∑
p

∞∑
r=1

zrnp

r

eβAp

|det (1 − Jr
p )|

]
. (20)

The trace formula for flows is derived as [52]

trLt =
∑

p

Tp

∞∑
r=1

erβ·Ap

|det (1 − Jr
p )|δ(t − rTp) , (21)

where Tp is the period of the period orbit p. Now we have a continuous family of operators.
So, to obtain the corresponding generating function we have to use integration instead of
summation, ∫ ∞

0+

dt e−sttrLt = tr
1

s −A =
∑

p

Tp

∞∑
r=1

er(β·Ap−sTp)

|det (1 − Jr
p )| , (22)
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where Jp is the restriction on a transverse section of the monodromy matrix associated
with the orbit p. The neutral direction along the cycle is excluded. In Appendix ??, it is
shown that the eigenvalues of Jp does not depend on the choice of the section. The spectral
determinant is

F (s) = det (s −A) = exp

[
−

∑
p

∞∑
r=1

1
r

eβ·Ap−sTp

|det (1 − Jr
p )|

]
. (23)

It is easy to check that

tr
1

s −A =
d

ds
ln det (s −A) =

d

ds
lnF (s) .

Note that the spectral determinants for maps and flows are very similar. Under the subsi-
tution

z → e−s , np → Tp

(20) becomes (23). In fact, in all the general expressions related to the spectral properties
of the evolution operator, this substitution relates the map version to the flow version.

Very often, we are only interested in the leading eigenvalue of the evolution operator.
In this case, only the dominant asymptotic behavior is of interest. If the flow is hyperbolic,
a further simplification is possible,

1
|det (1 − Jr

p )| ≈
1

|Λp|r , (24)

where Λp = ΠeΛp,e is a product of expanding eigenvalues {Λp,e}e of the matrix Jp. With
r → ∞, the relative difference between the two sides of (24) becomes exponentially small,
and (20) leads to the dynamical zeta function

1
ξ(z)

= exp

(
−

∑
p

∞∑
r=1

1
r
trp

)
=

∏
p

(1 − tp) , (25)

where tp = znp exp(βAp)/|Λp|. In practice, the spectral determinant (20) has better con-
vergence properties [50] and if we need more eigenvalues other than the leading one, the
spectral determinant gives the correct result.

2.3.2 Geometrical interpretation

We now give an intuitive explanation to (25) from a geometrical point of view. Consider the
set Pn = {pi,n : fn(pi,n) = pi,n} of fixed points of fn and assume that there are m of them.
The SIS in the phase space is partitioned by the neighborhoods {Mi,n} of these periodic
points. For simplicity, suppose that each of the neighborhoods Mi,n expands to cover the
whole SIS in a one-to-one manner under the map fn. So, if n → ∞, the size of each Mi,n,
denoted by V (Mi,n) goes to zero exponentially. If n is large, then V (Mi,n) ∝ 1/Λi,n ,
where Λi,n is the product of expanding eigenvalues of Dfn(pi,n), and to a high accuracy fn

can be treated as linear in each Mi,n. The SIS has each component Mi,n as a preimage,
so fn will map m different pieces to Mi,n ,∀i , one piece from each Mj,n , j = 1, · · · , m.
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Put a uniform density defined by I(x) on the SIS. After the action by fn, we see that
mass contained in Mi,n (the integral of I(x) over Mi,n) is proportional to its size V (Mi,n)
because the mass contained in each of its m preimages is proportional to the size of the
preimage in the corresponding Mj,n. We know that In(x) = Ln ◦I(x) tends to the natural
invariant measure ρ(x) for large n, so

〈a〉 =
∫
M

dx ρ(x)a(x) ≈
∫
M

dx In(x)a(x)

≈ C
m∑

i=1

a(xi)
Λi,n

,

where C is a constant and xi ∈ Mi,n is a representative point. The deviation comes from the
non-uniform expansion of fn and non-constancy of a(x) inside each Mi,n, which become
vanishingly small when n is large. So, we may interpret (25) as the natural weight of
each periodic point. The trace formula (18) is just a weighted summation over the linear
neighborhood of all the periodic points. The weight is given by (24), and it is an invariant
quantity determined by the dynamics f , independent of the choice of coordinate system.

2.3.3 Correlation functions

We know that the largest eigenvalue of the evolution operator dominates s(β), thus deter-
mines the statistical properties of an observable. What is the physical significance of the
rest eigenvalues? Below, we will see that they determine the correlation of two or more
observables.

The time correlation function Cab(t) of two observables a and b along the trajectory
x(t) = f t(x0) is defined as

Cab(t; x0) = lim
T→∞

1
T

∫ T

0
dτa(x(τ + t))b(x(τ)) , x0 = x(0) . (26)

If the system is ergodic [267], with invariant continuous measure ρ(x), then correlation
functions do not depend on x0 (apart from a set of zero measure), and may be computed
by a space average as well

Cab(t) =
∫
M

dx0 ρ(x0)a(f t(x0))b(x0) . (27)

For a chaotic system we expect that time evolution will lose the information contained in
the initial conditions, so that Cab(t) will approach the uncorrelated limit 〈a〉〈b〉. As a matter
of fact, the asymptotic decay of correlation functions

Ĉab := Cab − 〈a〉 〈b〉 (28)

for any pair of observables coincides with the definition of mixing, a fundamental property
in ergodic theory. We now assume 〈b〉 = 0 (otherwise we may define a new observable by
b(x)−〈b〉). Our purpose is now to connect the asymptotic behavior of correlation functions
with the spectrum of L. We can write (27) as

Cab(t) =
∫
M

dx

∫
M

dy a(y)b(x)ρ(x)δ(y − f t(x)),
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and recover the evolution operator

Cab(t) =
∫
M

dx

∫
M

dy a(y)Lt(y, x)|β=0b(x)ρ(x)

We showed that ρ(x) is the eigenvector of L corresponding to probability conservation∫
M

dy Lt(x, y)ρ(y) = ρ(x) .

The corresponding leading eigenvalue is 0. Now, we can expand the x dependent part in
terms of the eigenbasis of L:

b(x)ρ(x) =
∞∑

α=0

cαφα(x),

where φ0 = ρ(x). Let Lt(y, x)|β=0 ,t→∞ acts on both sides. The average of the left hand side
is zero since the evolution operator does not change the average. The average of the right
hand side is equal to c0, since other eigenmodes decay exponentially during the evolution as
their eigenvalues are smaller than zero. So c0 = 0 and the action of L then can be written
as

Cab(t) =
∑
m�=0

esmtcα

∫
M

dy a(y)φk(y). (29)

We see immediately that if the spectrum has a gap, that is the second largest leading
eigenvalue is isolated from the largest eigenvalue (s0 = 0) then (29) implies an exponential
decay of correlations

Cab(t) ∼ eνt.

The correlation decay rate ν = s1 then depends only on intrinsic properties of the dynamical
system (the position of the next-to-leading eigenvalue of the Perron-Frobenius operator),
while the choice of particular observables determines the prefactor.

Correlation functions are important because they are often accessible from time series
measurable in laboratory experiments and numerical simulations: moreover they are linked
to transport exponents.

2.4 Cycle expansions

The spectral determinant (20) and (23) or the dynamical zeta function (25) are just formal
infinite product expressions, and a effective way to evaluate them has to be presented in
practice. To achieve this goal, in this section the cycle expansion method will be introduced
and discussed. It reexpresses the formal product in terms of a convergent sum over periodic
orbits ordered with a hierarchical way with contributions from long cycles decaying rapidly.

It is easiest to illustrate the cycle expansion by the dynamical zeta function. Consider
the dynamical zeta function for a system whose symbolic dynamics is a full shift on two
symbols {0, 1}:

1
ξ(x)

= (1 − t0)(1 − t1)(1 − t01)(1 − t001)(1 − t011)(1 − t0001)(1 − t0011)(1 − t0111) · · · .
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Expanded into a sum over cycles of increasing total length this becomes:

1
ξ(z)

= 1 − t0 − t1 − t01 − t001 − t011 − · · ·
+t0t1 + t0t01 + t1t01 + t0t001 + · · ·
−t0t1t01 − t0t1t001 − · · · , (30)

where the products of t∗’s are called pseudocyles, e.g., t0t1 , t0t1t001 are pseudocycles. Such
series representation of a dynamical zata function or spectral derterminant, expanded as
a sum over pseudocycles and ordered by increasing cycle length and instability, is called
cycle expansion. In a uniformly hyperbolic map like the Ulam map (quadratic map) or tent
map (piecewise linear map), |tp|〉C/Λn, where C > 0 and Λ > 1 are constants, and n is the
length of the cycle. Let

F1 = |t0| + |t1| + |t01| + |t001| + |t011| + · · · . (31)

As the number of prime cycles of period n is less than 2n/n, the series in (31) converges
and F1 can be made to be smaller than 1 if z in tp is chosen sufficiently small. It follows
that ∣∣∣∣ 1

ξ(z)

∣∣∣∣ < 1 + F1 + F 2
1 + F 3

1 + · · · =
1

1 − F1
. (32)

From (32), we see that the dynamical zeta function 1/ξ(z) is well defined and is an analytic
function of z for z sufficiently small. 1/ξ(z) may be extended to bigger domains in the
complex plane by analytic continuation. This proof of convergence can be easily extended
to general hyperbolic systems with more complex symbolic dynamics or higher phase space
dimensions.

While we proved the convergence of (30), the summation scheme used in the proof is not
the best. A better one is to regroup the terms into the dominant fundamental contributions
tf and the decreasing curvature corrections cn:

1
ξ(z)

= 1 − t0 − t1 − [t01 − t0t1] − [t001 − t0t01 + t011 − t01t1] − · · ·

= 1 −
∑

f

tf −
∑
n

cn . (33)

We refer such regrouped series as curvature expansion. The fundamental contribution orig-
inates from the symbolic dynamics partition and reflects the qualitative dynamics of the
system at the coarsest level. The curvature correction is due to the non-uniform expansion
of the map. Longer cycles correspond to finer partitions of the phase space, and the curva-
ture corrections are the difference between locally linear approximations of f t in the coarse
and the fine partitions. For example, the curvature term [t01 − t0t1] in (33) accounts for the
difference of weights between the partitions of unit interval into two parts (centered around
periodic points p0 , p1) and into four parts (centered around p0 , p1 , p01 , p10) [56]. For uni-
formly hyperbolic systems, the curvature corrections decay exponentially fast with the cycle
length, with convergence controled by the second derivatives (curvatures) of f t. In this case,
we say that that the long cycles are shadowed by shorter ones. Shadowing is an important
observation to justify the numerical calculation when the dynamics is chaotic [106, 102].
Here, shadowing between periodic orbits is an intrinsic property and reveals the existence

Y. Lan - PhD thesis - version 0.8 - May 18, 2004 period - 6apr2004, printed May 24, 2004



CHAPTER 2. PERIODIC ORBIT THEORY 27

of the underlying hierarchical structure in the dynamical system. For the tent map (Eq.
(??) in Chapter 3), the curvature corrections cn are identically zero as its expansion rate is
uniform everywhere.

If we write out (33) in a polynomial series of z, it is clear that the terms which have
the same powers of z are grouped. Here z can be viewed as a kind of topological index,
the powers of which indicate the topological length of cycles or psudocycles. By applying
the same technique to the spectral determinant, we group terms of same powers of z in the
cumulant expansion of the exponential in (20). In the flow case, we need to introduce some
topological length (integers) to each cycle p. For example, the flow may be viewed as a map
on some Poincaré section and we assign the topological length of a cycle in the map to its
correspondent in the flow. Usually, this is simultaneously done with the symbolic dynamics
established on the Poincaré section. One example is the 3-disk billiard [50], every collision
of the billiard with a disk increases the topological length by one. Once the topological
length of each cycle is known, we may encode this information to the spectral determinant
(23) by adding an auxiliary variable z such that (23) becomes

F (s) = exp

[
−

∑
p

∞∑
r=1

1
r

zrnperβAp−sTp

|det (1 − Jr
p )|

]
, (34)

where np is the topological length of the prime cycle p. The symbolic dynamics as well as
the topological length assignment is no way unique. A good choice should exhibit maximal
shadowing and thus lead to a fast convergence of the curvature expansion. After the cur-
vature expansion is implemented, we may set z = 1 and solve F (s) = 0 for the eigenvalues
s of the evolution operator.

2.4.1 Cycle formula for dynamical averages

In view of (14) and (9), we have
s(β) = s0(β) ,

where s0(β) is the largest eigenvalue of L (or A for the flow) and depends on the parameter
β. Here we have assumed that s0(β) is seperated from other eigenvalues by a finite gap. In
general, there is no analytic expression for s(β), and all calculations have to be carried out
numerically. Once we calculate s0(β), the corresponding dynamical averages are obtained
through (10). The computation requires taking derivatives of s0(β) with respect to β,
which inevitably lowers the accuracy of the calculation if numerical differentiation is used.
Moreover several s0(β) values have to be calculated for different β’s near β = 0.

Such numerical derivatives are not needed, as we can use the spectral determinant or
dynamical zeta function directly to compute the derivatives. In both formulations, s0(β) sat-
isfies equations of the form G(β, s(β)) = 0. The first and second derivative of G(β, s(β)) = 0
yields respectively

∂s

∂β
= −∂G/∂β

∂G/∂s
(35)

∂2s

∂β2
= −

[
∂2G

∂β2
+ 2

∂2G

∂β∂s

∂s

∂β
+

∂2G

∂s2

(
∂s

∂β

)2
]

/
∂G

∂s
, (36)
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where all the terms are evaluated at s = s0(β = 0). Note that all the quantities on the right
hand side can be calculated directly through the spectral determinant or the dynamical
zeta function. So, the accuracy of the evaluation is not lost and only s0(β = 0) has to be
solved for.

2.5 Summary

One advantage of the periodic orbit theory is that all the eigenvalues of an evolution operator
are obtained without explicitly constructing the singular eigenfunctions defined on a fractal
set. Second, only short UPOs are needed for any finite precision calculation. Furthermore,
UPOs and their stabilites are intrinsic properties of a dynamical system. They are indepen-
dent of the representation coordinates, i.e., invariant under smooth conjugacies [62]. We
may choose the best representation that meets our needs. Third, if the chaotic system is
uniformly hyperbolic, cycle expansions converge exponentially fast. If in addition a Markov
partition [106] exists, the cycle expansion converges super-exponentially.

There are also many open problems in this periodic orbit approach. Establishing and
controling the rate of convergence of cycle expansions remains the biggest problem. What
is proven in literature is that cycle expansions are convergent if the nonlinear system is
uniformly hyperbolic. Most physical systems we encounter are not uniformly hyperbolic,
indeed they are almost never purely hyperbolic. Though cycle expansions are a useful tool in
many cases, they fail (converge extremely slowly) on other occasions. The failure is mainly
due to the bad shadowing of certain long cycles by the short ones. Some procedures have
been proposed to improve the convergence, for example, a symbolic dynamics of infinite
alphabet has been used in the 1 − d intermittent map [10], or special ordering is used to
do the grouping and truncation [61]. The problem is far from solved. For example, we still
do not know how to treat the intermittency in general high-dimensional systems, how to
give correct weights to each component in a mixed phase space, or have trace formulas for
invariant sets other than the perodic orbits, like the invariant tori.

Another problem is associated with the complexity of the phase space structure. In all
cycle expansion calculations, the UPOs have to be classified and ordered in a hierarchical
way, so the establishment of a symbolic dynamics is necessary. Unfortunately, only one-
or two-dimensional maps can be treated fairly completely [50, 117]. Little has been done
to deal with the high-dimensional case. For example, in the applications discussed in this
thesis we never know whether all the periodic orbits up to some given length are found.
Even one omitted short orbit could undermine the accuracy considerably [50]. The hope for
which we offer some evidence in what follows, is that we may use UPOs and other invariant
sets like equilibria or heteroclinic orbits to unfold the structure of the phase space level by
level.

Except for a few exceptional cases, the theory requires efficient numerical determination
of the shortest periodic orbits in a given nonlinear system. If the system is strongly chaotic
or has a high-dimensional phase space, many existing methods either fail or are inefficient.
Development of reliable and efficient numerical schemes for locating periodic orbits is a
big challenge in the application of periodic orbit theory. In the next chapter, we will
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introduce a new set of numerical methods for detecting UPOs, taylored to high (and infinite-
) dimensional dynamical flows.
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CHAPTER III

PERIODIC ORBITS AND HOW TO FIND THEM

In the previous chapter, we have emphasized the crucial role of UPOs in studying a dy-
namical system and suggested application of the periodic orbit theory to spatiotemporal
chaos. The successful implementation of these ideas depends heavily on efficient numerical
techniques for finding UPOs. Various methods have been developed to find UPOs in low-
dimensional chaotic systems, either discrete or continous [50], while efficient methods are
still called upon in high-dimensional systems. In this chapter, we will review common tech-
niques and then introduce a novel variational scheme for finding periodic orbits. Finally,
further developments of the method and some possible applications are proposed.

3.1 Review of known techniques for locating UPOs

In essence, any method for numerically finding periodic orbits is based on devising a new
dynamical system which possesses the desired orbit as an attracting fixed point with a sizable
basin of attraction. Beyond that, there is much freedom in constructing such systems. In the
following, several techniques are briefly reviewed with their advantages and disadvantages
being mentioned.

3.1.1 Inverse iteration and anti-integral limit method

The inverse iteration is most easily described in the 1 − d map and can be generalized to
higher-dimensional cases under certain cercumstances. The anti-integral limit method is
closely related to the inverse iteration. Both of them enjoy direct and heuristic applications
of symbolic dynamics.

To find a prime cycle with a given symbol sequence in the unimodal map, we read the
symbol sequence backward, pick up a point in the subinterval corresponding to the last
symbol, and then start the inverse iteration. A point has two preimages and only one of
them is picked up according to the reversed symbol sequence. As f(x) is expanding, the
inverse iteration is contracting. The resulting orbit point will approach the desired periodic
orbit exponentially fast since the discrepancy shrinks exponentially under the contractive
inverse map.

In higher dimensions, maps or flows usually have both contracting and expanding di-
rections. Inverse iteration does not apply directly. If in the contracting directions, the
SIS is thin enough to be treated approximately as an zero-dimensional object - a finite set
of points (actually a fractal set with a dimension between 0 and 1; by “thin”, we mean
that the dimension is close to 0), we are able to build a non-invertible expanding map by
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projecting the original map onto the unstable manifolds and investigate the simplied model
system. As there are only expanding directions now, inverse iteration may be invoked again
to give periodic orbits of the model system. These orbits are often quite close to the true
UPOs of the original system, and are profitably used as the starting guesses for other UPO
determining methods. The anti-integral limit [11] is a good example in this direction [237].

In spirit, the anti-integrable limit is similar to the slaving function [245] for flows. Con-
sider a smooth flow

ẋ = f(x, y) , ẏ =
−y

ε
+ g(x, y) , (37)

where x, f ∈ R
d ; y, g ∈ R

m, and ε is a small parameter. If we consider the motion in a
bounded neighborhood N of the origin, in the limit ε → 0, we may set y = 0 due to the
strong contraction term −y/ε in the second equation of (37). To the zeroth order in ε, y = 0
defines a slaving function of the motion, putting geometrical constraints on the asymptotic
dynamics which is determined by the first equation of (37). When ε assumes a small but
finite value, the motion is not strictly confined though very close to the slaving manifold.
Hyperbolic motion on the manifold at ε = 0 can easily be continued to motion at ε > 0.
Alternatively, we may multiply the second equation by ε and ignore the time evolution term
on the left hand side due to the smallness of ε. The idea can be conveniently carried over
to a continuous family of maps xk+1 = fε(xk) with x, f ∈ R

d , ε ∈ R, which can be written
as

εf1(xk+1, xk) + f2(xk+1, xk) = 0.

In the anti-integrable limit ε → 0, we have the geometrical constraints f2(xk+1, xk) = 0,
rendering a new map hopefully less complex than the original one. In particular, when f2

only involves xk, the constraints f2(xk) = 0 give a countable (usually finite) collection of
fixed points. If we assign a symbol to each of these points, the map reduces to arbitrary
transitions among these points and can be conveniently described by a symbolic dynamics.
Under quite general assumptions, the orbits, especially the UPOs, prescibed by the symbolic
dynamics can be uniquely continued to the orbit for ε �= 0 [237].

We now see an example. Consider the circle map

xi+1 = xi + α + k sinxi , (38)

which is equivalent to
sinxi − ε(xi+1 − xi − α) = 0 ,

with ε = 1/k. In the anti-integral limit, ε → 0, the dynamical system becomes implicit and
defined by the equation

sinxi = 0

which yields the points xi = miπ , mi ∈ Z. So the dynamics of (38) for large k is coded by
an infinite sequence of symbols. On a circle, xi is defined up to multiples of 2π, the symbol
sequence reduces to two symbols. See [11] for more examples.

In both the anti-integrable limit or the inverse iteration, the deterministic nature of
maps is lost as the current state cannot uniquely determine the future state. We need a
symbol sequence to make the map uniquely defined. The current position in the expanding
direction is determined by the future itinerary and in the contracting direction determined
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by the past itinerary. Even the crudest description - the symbolic dynamics will determine
the position accurately. So, the topology prescribed by the symbolic dynamics is robust
and very constraining. In this sense, the symbolic dynamics and the stability eigenvalues
give a detailed intrinsic description of the phase dynamics on the SIS and define an abstract
dynamical object. How to embed this object to a specific phase space is a geometrical
problem determined by the specific dynamical system.

3.1.2 Phase-space partition method and cyles from long time series

Very often, we have a long discrete time series extracted from either experimental measure-
ments or numerical simulations on a chaotic system. To find embedded UPOs, we have to
depend on near recurrences, having in mind the ergodic property of chaotic systems. We
prefix a positive integer n as the period of the periodic orbits under search and start to
compare all data pairs that are separated by n−1 intermediate points. If the data in a pair
are close to each other, it is likely that they are close to a periodic orbit of period n. These
pairs can be used as a starting point for further calculations. In this way, sets of periodic
orbits and their stability eigenvalues can be calculated quite accurately [12].

When the phase space is known or reconstructed from time series, we may do a little
bit better. One natural way to approximate the chaotic dynamics on a compact invariant
set is to partition the phase space (or Poincaré section) into a set of controllable cells and
study mappings among these cells. If a cell contains a fixed point, then it must map to
itself. To reduce workload, a coarse partition is used at the beginning and the mappings of
the cells are checked. Refinements are made only with those which contain themselves in
their images. In ref. [122], linearized maps are used to approximate the nonlinear map near
the lattice points and successive refinements locate the fixed points quite accurately.

The good part of this global searching method is that it only needs evaluation of the map
on the lattice points, which avoids the usual time-consuming calculation of the Jacobian of
the map. There are two disadvantages. If the phase space dimension is high, it requires a
good many cells to cover the SIS and this may make the program very slow. Secondly, if a
long cycle is under search, the linear region of the repeated map is so small that the partition
has to be very fine to capture the essential dynamics, which of course could tremendously
increase the computation load and lower numerical accuracy.

3.1.3 Shooting method

If we have a good guess of the position of one or more points on a periodic orbit, simple
or multipoint shooting [238, 50] is a nice method to apply. They are variants of Newton’s
root-searching scheme and retain its quadratic convergence when the guess is close to a true
solution.

Consider a map f : R
d → R

d. We are trying to find one of its fixed points, say
x̄ : f(x̄) = x̄, starting from the present guess xk. Assume that xk is close to x̄, that is to
say, x̄ = xk + δxk with |δxk| small. From the fixed point condition, we have

xk + δxk = f(xk + δxk) ≈ f(xk) + δxk · ∇f(xk) .
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Solving for δxk and replacing xk by xk+1 = xk + δxk result in Newton-Raphson iteration,

xk+1 = xk + (1 −∇f(xk))−1 · (f(xk) − xk) , (39)

which is a widely employed method for finding roots of nonlinear equations.

Small modifications easily adapt the method to treating flows. Consider a flow f t :
R × R

d → R
d. A Poincaré section P = {x ∈ R

d : a · x = 0}, where a ∈ R
d is given, will

produce a map out of the flow if orbits of the flow intersect P transversely. Fixed points on
P are periodic orbits for the flow. Suppose that we have a guess of xk on P and the return
time tk at a cycle x̄ = xk + δxk with the return time t̄ = tk + δtk. From the periodicity
condition and the assumption that δxk, δtk are small, we have

xk + δxk = f tk+δtk(xk + δxk)
≈ f tk(xk) + Jk · δxk + vkδtk ,

(40)

where

vk =
∂f tk

∂t
(xk) , Jk =

∂f tk

∂x
(xk) .

In matrix form, we have(
1 − Jk −vk

a 0

) (
δxk

δtk

)
=

(
f tk(xk) − xk

)
, (41)

where the last row keeps the coordinates on the Poincaré section. Solving (41) gives the
corrections δxk and δtk. For very long or very unstable orbits, multipoint shooting replaces
the simple shooting to make each of the shooting segments controllable, thus leading to a
more stable numerical procedure [238].

Since the multipoint shooting only involves a local orbit segment, it is very adaptive. An
example is associated with the development of automatic differentiation [104]. By applying
the method, the local orbit segment is conveniently expressed in terms of polynomials of
the time variable from the truncated Taylor series. For finding UPOs, a set of points are
sprinkled along the initial guessed orbit positions. The polynomials give local solution
curves through each point. Matching values of the polynomials and their derivatives at
intermediate points leads to the location of true periodic orbits [107].

3.1.4 Variational and relaxation approach

If the equations of motion in a dynamical system are associated with a variational principle,
extremization techniques can be invoked to produce periodic orbits. For example, in a
classical mechanical system, with Lagrangian L(q, q̇, t), where q ∈ R

d, the equations of
motion are determined by the action principle

δR[q] = δ

∫ t2

t1

dtL(q, q̇, t) = 0 . (42)
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Euler-Langrian equation is a consequence of (42) if the initial configuration at t1 and the
final configuration at t2 are fixed. The action principle can also be used directly for searching
periodic orbits. Creating a loop, a smooth closed curve q(t) with q(t + T ) = q(t) as the
initial guess and extremizing (42) leads to a periodic orbit. This can be done in either
Fourier space (in view of the periodicity) or configuration space. The advantage of this
approach is that cycles are produced with a given topology since the initial guess is not a
point but a whole loop and the topological feature of the targeting cycle is very robust.

In Lagrangian maps, orbits can also be expressed as extrema of a variational principle.
Periodic orbits are stationary points of a finite set of ODEs [147, 80, 249]. Even when the
map is not area-preserving, sometimes it is still possible to find a variational principle for
the orbits. For example, Biham and Wenzel [18] proposed a fictitious time τ “Hamiltonian”

H =
1
2
Σk b−k

(
dxk

dt

)2

+ (−b)−k

[
xk(xk+1 − xk−1) − (b−1 + 1)

(
axk − 1

3
x3

k

)]
(43)

whose stationary points are orbits of the Hénon map

xk+1 = a − x2
k + byk , yk+1 = xk . (44)

The fictitious time flow toward a guessed n-point cycle is governed by

dxk

dt
= skFk , k = 1, · · · , n , (45)

where Fk = (−b)−k(b−1+1)[−xk+1+a−x2
k+bxk−1] , sk = ±1 and xn+1 = x1. The stationary

points of (45) correspond to the period n cycles of (44). If an equilibrium is stable, it attracts
the corresponding cycle guess in its basin of attraction. In general, a stationary point can
be an attractor, a repeller or a saddle point, and in Biham-Wenzel approach a stationary
point of (45) is made stable with appropriate choice of prefactors sk. Depending on the
a, b values, almost all admissible periodic orbits up to some length are found if 2n different
choices of {sk}n

k=1 are tried. However, K. T. Hansen pointed out that the method fails to
converge for some cycles [114]. In ref. [101], it is shown that the method might fail in two
ways: the search ends up with a limit cycle of (45), or two different sequences of {sk} result
in the same orbit. Later, in another paper [19], the authors extended the method to cycle
search on the complex plane. There, all the 2n cycles (including the complex ones) of length
n are found.

The idea of changing stability of orbits was further pursued in refs. [60, 63, 201, 200, 221].
Suppose that we have a map f : R

d → R
d. The fixed points are obtained by designing a

new map
Ln : xk+1 = xk + Sn[f(xk) − xk] , (46)

where Sn is a constant invertible matrix. Fixed points of Ln are by construction also the
fixed points of f . It is expected that by multiplying with an appropriate Sn the desired
periodic orbit becomes stable for Ln, and with other choices of Sn’s, Ln converges to other
cycles. The advantage of the approach is that an explicit analytical expression for the map
is not necessary. Problems of such approaches are similar to those mentioned above for the
Biham-Wenzel’s method for the Hénon map, and .

In sect. 3.2, we will devise a variational method for searching periodic orbits in a gen-
eral flow. Our method combines the robustness of the relaxation approach with the fast
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convergence of the Newton-Raphson method when the search is sufficiently close to a true
UPO. The idea of our method is to make an informed rough guess of what the desired cycle
looks like globally, and then use a variational method to drive the initial guess toward the
exact solution. For robustness, we replace the guess of a single orbit point by a guess of an
entire orbit. For numerical safety we replace the Newton-Raphson iteration by the “New-
ton descent”, a differential flow that minimizes monotonically a cost function computed as
deviation of the approximate flow from the true flow along a smooth loop approximation
to a cycle.

3.2 The Newton descent method in loop space

The multipoint shooting method eliminates the long-time exponential instability of unstable
orbits by splitting an orbit into a number of short segments, each with a controllable ex-
pansion rate. Combined with the Newton-Raphson root-seaching technique it is an efficient
tool for locating periodic orbits of maps [37]. A search for periodic orbits of a continuous
time flow can be reduced to a multiple shooting search for periodic orbits of a set of maps
by constructing a set of phase space Poincaré sections such that an orbit leaving one section
reaches the next one in a qualitatively predictable manner, without traversing other sections
along the way. In turbulent, high-dimensional flows such sequences of sections are hard to
come by. One solution might be a large set of Poincaré sections, with the intervening flight
segments short and controllable.

Here we follow a different strategy, and discard Poincaré sections altogether; we replace
maps between spatially fixed Poincaré sections, by maps induced by discretizing the time
evolution into small time steps. For sufficiently small time steps such maps are small
deformations of identity. We distribute many points along a smooth loop L, our initial
guess of a cycle location and its topological layout. If both the time steps and the loop
deformations are taken infinitesimal, a partial differential equation governs the “Newton
descent”, a fictitious time flow of a trial loop L into a genuine cycle p, with exponential
convergence in the fictitious time variable. We then use methods developed for solving
PDEs to get the solution.

In this section we derive the partial differential equation which governs the evolution of
an initial guess loop toward a cycle and the corresponding cost function. An extension of
the method to Hamiltonian systems and systems with higher time derivatives is presented
in sect. 3.3. Simplifications due to symmetries and details of our numerical implementation
of the method are discussed in sect. 3.4. In sect. 3.5 we test the method on the Hénon-Heiles
system, the restricted three body problem, and a weakly turbulent Kuramoto-Sivashinsky
system. We summarize our results and discuss possible improvements of the method in
sect. 3.6.

3.2.1 A variational equation for the loop evolution

A periodic orbit is a solution (x, T), x ∈ R
d, T ∈ R of the periodic orbit condition

fT(x) = x , T > 0 (47)
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for a given flow or discrete time mapping x �→ f t(x). Our goal is to determine periodic
orbits of flows defined by first order ODEs

dx

dt
= v(x) , x ∈ M ⊂ R

d , (x, v) ∈ TM (48)

in many (even infinitely many) dimensions d. Here M is the phase space (or state space)
in which evolution takes place, TM is the tangent bundle [8], and the vector field v(x) is
assumed to be smooth (sufficiently differentiable) almost everywhere.

We make our initial guess at the shape and the location of a cycle p by drawing a loop
L, a smooth, differentiable closed curve x̃(s) ∈ L ⊂ M, where s is a loop parameter. As
the loop is periodic, we find it convenient to restrict s to [0, 2π], with the periodic condition
x̃(s) = x̃(s + 2π). Assume that L is close to the true cycle p, pick N pairs of nearby points
along the loop and along the cycle

x̃n = x̃(sn) , 0 ≤ s1 < . . . < sN < 2π ,

xn = x(tn) , 0 ≤ t1 < . . . < tN < Tp , (49)

and denote by δx̃n the deviation of a point xn on the periodic orbit p from the nearby point
x̃n,

xn = x̃n + δx̃n .

The deviations δx̃ are assumed small, vanishing as L approaches p.

The orientation of the s-velocity vector tangent to the loop L

ṽ(x̃) =
dx̃

ds

is intrinsic to the loop, but its magnitude depends on the (still to be specified) parametriza-
tion s of the loop.

At each loop point x̃n ∈ L we thus have two vectors, the loop tangent ṽn = ṽ(x̃n) and
the flow velocity vn = v(x̃n). Our goal is to deform L until the directions of ṽn and vn

coincide for all n = 1, . . . , N , N → ∞, that is L = p. To match their magnitude, we
introduce a local time scaling factor

λ(sn) ≡ ∆tn/∆sn , (50)

where ∆sn = sn+1 − sn, n = 1, . . . , N − 1 , ∆sN = 2π− (sN − s1), and likewise for ∆tn. The
scaling factor λ(sn) ensures that the loop increment ∆sn is proportional to its counterpart
∆tn + δtn on the cycle when the loop L is close to the cycle p, with δtn → 0 as L → p.

Let x(t) = f t(x) be the state of the system at time t obtained by integrating (48) with
initial state x, and J(x, t) = dx(t)/dx be the corresponding Jacobian matrix obtained by
integrating

dJ
dt

= AJ , Aij =
∂vi

∂xj
, with J(x, 0) = 1 . (51)

Since the point xn = x̃n + δx̃n is on the cycle,

f∆tn+δtn(x̃n + δx̃n) = x̃n+1 + δx̃n+1 . (52)
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Figure 2: (a) An annulus L(τ) swept by the Newton descent flow dx̃/dτ , connecting smoothly the
initial loop L(0) to the periodic orbit p = L(∞). (b) In general the loop velocity field ṽ(x̃) does not
coincide with λv(x̃); for a periodic orbit p, it does so at every x ∈ p.

Linearization

f δt(x) ≈ x + v(x)δt , f t(x + δx) ≈ x(t) + J(x, t)δx ,

of (52) about the loop point x̃n and the time interval ∆tn to the next cycle point leads to
the multiple shooting Newton-Raphson equation, for any step size ∆tn:

δx̃n+1 − J(x̃n, ∆tn)δx̃n − vn+1δtn = f∆tn(x̃n) − x̃n+1 . (53)

Provided that the initial guess is sufficiently good, the Newton-Raphson iteration of (53)
generates a sequence of loops L with a decreasing cost function [55]

F 2(x̃) ≡ N

(2π)2

N∑
i=1

(f∆tn(x̃n) − x̃n+1)2, x̃N+1 = x̃1 . (54)

The prefactor N/(2π)2 makes the definition of F 2 consistent with (59) in the N → ∞ limit.
If the flow is locally strongly unstable, the neighborhood in which the linearization is valid
could be so small that the full Newton step would overshoot, rendering F 2 bigger rather
than smaller. In this case the step-reduced, damped Newton method is needed. As proved
in ref. [142], under conditions satisfied here, F 2 decreases monotonically if appropriate step
size is taken. If infinitesimal steps are taken, decrease of F 2 is ensured. We parametrize
such continuous deformations of the loop by a fictitious time τ .

We fix ∆sn and proceed by δτ each step of the iteration, that is, multiply the right
hand side of (53) by δτ . According to (50), the change of ∆tn with respect to τ is equal to
δtn = ∂λ

∂τ (sn, τ)δτ∆sn. As δx̃n = ∂
∂τ x̃(sn, τ)δτ , dividing both sides of (53) by δτ yields

dx̃n+1

dτ
− J(x̃n, ∆tn)

dx̃n

dτ
− vn+1

∂λ

∂τ
(sn, τ)∆sn

= f∆tn(x̃n) − x̃n+1 . (55)

In the N → ∞ limit, the step sizes ∆sn, ∆tn = O(1/N) → 0, and we have

vn+1 ≈ vn , x̃n+1 ≈ x̃n + ṽn∆sn ,

J(x̃n, ∆tn) ≈ 1 + A(x̃n)∆tn , f∆tn(x̃n) ≈ x̃n + vn∆tn .
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Substituting into (55) and using the scaling relation (50), we obtain

∂2x̃

∂s∂τ
− λA

∂x̃

∂τ
− v

∂λ

∂τ
= λv − ṽ. (56)

This PDE, which describes the evolution of a loop L(τ) toward a periodic orbit p, is our
central result. The family of loops so generated is parametrized by x̃ = x̃(s, τ) ∈ L(τ),
where s denotes the position along the loop, and the fictitious time τ parametrizes the
deformation of the loop, see figure 2(a). We refer to this infinitesimal step version of the
damped Newton-Raphson method as the “Newton descent”.

The important feature of this equation is that a decreasing cost functional exists. Rewrit-
ing (56) as

∂

∂τ
(ṽ − λv) = −(ṽ − λv) , (57)

we have
ṽ − λv = e−τ (ṽ − λv)|τ=0 , (58)

so the fictitious time τ flow decreases the cost functional

F 2[x̃] =
1
2π

∮
L(τ)

ds (ṽ(x̃) − λv(x̃))2 (59)

monotonically as the loop evolves toward the cycle.

At each iteration step the differences of the loop tangent velocities and the dynamical
flow velocities are reduced by the Newton descent. As τ → ∞, the fictitious time flow aligns
the loop tangent ṽ with the dynamical flow vector ṽ = λv, and the loop x̃(s, τ) ∈ L(τ), see
figure 2(b), converges to a genuine periodic orbit p = L(∞) of the dynamical flow ẋ = v(x).
Once the cycle p is reached, by (50), λ(s,∞) = dt

ds(x̃(s,∞)), and the cycle period is given
by

Tp =
∫ 2π

0
λ(x̃(s,∞))ds .

Of course, as at this stage we have already identified the cycle, we may pick instead an initial
point on p and calculate the period by a direct integration of the dynamical equations (48).

3.2.2 Marginal directions and accumulation of loop points

Numerically, two perils lurk in a direct implementation of the Newton descent (56).

First, when a cycle is reached, it remains a cycle under a cyclic permutation of the
representative points, so on the cycle the operator

Ā =
∂

∂s
− λA

has a marginal eigenvector v(x̃(s)) with eigenvalue 0. If λ is fixed, as the loop approaches
the cycle, (56) approaches its limit

Ā
∂x

∂τ
= 0 .
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Therefore, on the cycle, the operator Ā−1 becomes singular and the numerical woes arise.

The second potential peril hides in the freedom of choosing the loop (re-)parametrization.
Since s is related to the time t by the yet unspecified factor λ(s, τ), uneven distributions of
the sampling points over the loop L could arise, with the numerical discretization points x̃n

clumping densely along some segments of L and leaving big gaps elsewhere, thus degrading
the numerical smoothness of the loop.

We remedy these difficulties by imposing constraints on (56). In our calculation for
Kuramoto-Sivashinsky system of sect. 3.5, the first difficulty is dealt with by introducing
one Poincaré section, for example, by fixing one coordinate of one of the sampling points,
x̃1(s2, τ) = const. This breaks the translational invariance along the cycle. Other types
of constraints might be better suited to a specific problem at hand. For example, we can
demand that the average displacement of the sampling points along the loop vanishes, thus
avoiding a spiraling descent toward the desired cycle.

We deal with the second potential difficulty by choosing a particularly simple loop
parametrization. So far, the parametrization s is arbitrary and there is much freedom in
choosing the best one for our purposes. We pick s−independent constant scaling λ(s, τ) =
λ(τ). With uniform grid size ∆sn = ∆s and fixed λ (in s), the loop parameter s = t/λ
is proportional to time t, and the discretization (56) distributes the sampling points along
the loop evenly in time. As the loop approaches a cycle, ∂x̃

∂τ is numerically obtainable from
(56), and on the cycle the period is given by Tp = 2πλ.

Even though here we concentrate on searching for periodic orbits, the Newton descent
is a general method. With appropriate modifications of boundary conditions and scaling
of time, (56) can be adapted to determination of homoclinic or heteroclinic orbits between
equilibrium points or periodic orbits of a flow, or more general boundary value problems.
Applied to 2-point boundary value problems, Newton descent is similar to the quasilin-
earization [238] but has the advantage that the free parameters λ(s, τ) are available for
adjusting scales in the problem and that searches can be restricted to phase space sub-
manifolds of interest. A simple example of a restriction to a submanifold are searches for
cycles of a given energy, constrained to the H(q, p) = E energy shell in the phase space
of a Hamiltonian system. Furthermore, as we shall show now, the symplectic structure of
Hamilton’s equations greatly reduces the dimensionality of the submanifold that we need
to consider.

3.3 Extensions of Newton descent

As mentioned above, in classical mechanics particle trajectories are also solutions of a varia-
tional principle, the Hamilton’s variational principle. For example, variational methods are
the key ingredient of the Aubry-Mather theory of area-preserving twist maps, discrete-time
Hamiltonian dynamical systems particularly suited to explorations of the K.A.M. theorem.
Proofs of the Aubry-Mather theorem [170] on existence of quasi-periodic solutions are vari-
ational. It was quickly realized that the variational methods can also yield reliable, high
precision computations of long periodic orbits of twist map models in 2 or more dimensions,
needed for K.A.M. renormalization studies [148].
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A fictitious time gradient flow for orbits of mappings, similar to the one discussed in
ref. [55], was introduced by Anegent [2] for twist maps, and used by Gole [98] in his proof
of the Aubry-Mather theorem. Mathematical bounds on the regions of stability of K.A.M.
tori are notoriously restrictive compared to the numerical indications, and de la Llave,
Falcolini and Tompaidis [80, 249] have found the gradient flow formulation advantageous
both in studies of the analyticity domains of the K.A.M. stability, as well as proving the
Aubry-Mather theorem for extended systems.

As far as we know, all numerical applications so far have been to low-dimensional Hamil-
tonian maps, not to continuous time flows. Instead of attempting to implement the least-
action variational principle as loop dynamics in a fictitious time, here we shall implement
our Newton descent as a flow that again minimizes a cost function, this time one that
penalizes misalignment of accelerations, the true one and the one computed on the loop
approximation to a cycle. We discuss the merits of the two kinds of variational principles
in Appendix B.

To motivate what follows on level of everyday intuition, consider how the least action
periodic orbit search works for a billiard: Connect points by a rubber band with a desired
topology, and then move the points along the billiard walls until the length (that is, the
action) of the rubber band is extremal (maximal or minimal under infinitesimal changes of
the boundary points). Note that the extremization of action requires only D configuration
coordinate variations, not the full 2D-dimensional phase space variations.

Can we exploit this property of the Newtonian mechanics to reduce the dimensionality
of our variational calculations? The answer is yes, and easiest to understand in terms of
the Hamilton’s variational principle which states that classical trajectories are extrema of
the Hamilton’s principal function (or, for fixed energy E, the action S = R + Et)

R(q1, t1; q0, t0) =
∫ t1

t0

dtL(q(t), q̇(t), t) ,

where L(q, q̇, t) is the Lagrangian. Given a loop L(τ) we can compute not only the tangent
“velocity” vector ṽ, but also the local loop curvature or “acceleration” vector

ã =
∂2x̃

∂s2
,

and indeed, as many s derivatives as needed. Matching the dynamical acceleration a(x̃)
(assumed to be functions of x̃ and v(x̃)) with the loop “acceleration” ã(x̃) results in a new
cost function and the corresponding PDE (57) for the evolution of the loop

∂

∂τ
(ã − λ2a) = −(ã − λ2a) .

We use λ2 instead of λ in order to keep the notation consistent with (50), that is t = λ s.
Expressed in terms of the loop variables x̃(s), the above equation becomes

∂3x̃

∂2s∂τ
− λ

∂a

∂v

∂2x̃

∂s∂τ
− λ2 ∂a

∂x̃

∂x̃

∂τ
+

(
∂a

∂v

∂x̃

∂s
− 2λa

)
∂λ

∂τ

= λ2a − ã , (60)
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where v = ∂x̃
λ∂s . Although (60) looks more complicated than (56), in numerical fictitious

time integrations, we are rewarded by having to keep only half of the phase space variables.

More generally, if a differential equation has the form:

x(m) = f(x, x(1), · · · , x(m−1)) , (61)

where x(k) = dkx
dtk

, k = 1, · · · , m and x ∈ R
d, the same technique can be used to match the

highest derivatives λmx(m) and x̃(m),

∂

∂τ
(x̃(m) − λmx(m)) = −(x̃(m) − λmx(m)) ,

with x̃(m) = ∂m

∂sm x̃(s) calculated directly from x̃(s) on the loop by differentiation. In loop
variables x̃(s) we have,

∂m+1x̃

∂sm∂τ
− λm

m∑
k=0

∂f

∂x(k)
· ∂

∂τ

∂kx̃

λk∂sk
− mλm−1x̃(m) ∂λ

∂τ

= λmx(m) − x̃(m) , (62)

where x(0) = x and x(k) = ∂kx̃
λk∂ks

, k = 1, · · · , m − 1 are assumed. Conventionally, (61) is
converted to a system of md first order differential equations, whose discretized derivative
(see (63) below) are banded matrices with band width of 5md. Using (62), we only need
d equations and for the same accuracy the corresponding band width is (m + 4)d. The
computing load has been greatly reduced, the more so the larger m is. Nevertheless, choice
of a good initial loop guess and visualization of the dynamics are always aided by a plot
of the orbit in the full md-dimensional phase space, where loops cannot self-intersect and
topological features of the flow are exhibited more clearly.

3.4 Implementation of Newton descent

As the loop points satisfy a periodic boundary condition, it is natural to employ truncated
discrete Fast Fourier Transforms (FFT) in numerical integrations of (56). Since we are
interested only in the final, stationary cycle p, the accuracy of the fictitious time integration
is not crucial; all we have to ensure is the smoothness of the loop throughout the integration.
The Euler integration with fairly large fictitious time steps δτ suffices. The computationally
most onerous step in implementation of the Newton descent is the inversion of the large
matrix Ā in (56). When the dimension of the dynamical phase space of (48) is high, the
inversion of Ā needed to get ∂x̃

∂τ takes most of the integration time, making the evolution
extremely slow. This problem is partially solved if the finite difference methods are used.
The large matrix Ā then becomes sparse and the inversion can be done far more quickly.

3.4.1 Numerical implementation

In a discretization of a loop, numerical stability requires accurate discretization of loop
derivatives such as

ṽn ≡ ∂x̃

∂s

∣∣∣∣
x̃=x̃(sn)

≈ (D̂x̃)n .
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In our numerical work we use the four-point approximation [24],

D̂ =
1

12h




0 8 −1 1 −8
−8 0 8 −1 1
1 −8 0 8 −1

· · ·
1 −8 0 8 −1

−1 1 −8 0 8
8 −1 1 −8 0




(63)

where h = 2π/N . Here, each entry represents a [d×d] matrix, 8 → 81, etc., with blank
spaces filled with zeros. The two [2d×2d] matrices

M1 =
(
1 −81
0 1

)
, M2 =

(−1 0
81 −1

)
,

located at the top-right and bottom-left corners take care of the periodic boundary condi-
tion.

The discretized version of (56) with a fictitious time Euler step δτ is(
Â −v̂
â 0

) (
δx̂
δλ

)
= δτ

(
λv̂ − ˆ̃v

0

)
, (64)

where

Â = D̂ − λ diag[A1, A2, · · · , AN ] ,

with An = A(x̃(sn)) defined in (51), and

v̂ = (v1, v2, · · · , vN )t , with vn = v(x̃(sn)) ,

ˆ̃v = (ṽ1, ṽ2, · · · , ṽN )t , with ṽn = ṽ(x̃(sn)) ,

are the two column vectors that we want to match during the evolution of the loop. â is
an Nd dimensional row vector which imposes the constraint on the coordinate variations
δx̂ = (δx̃1, δx̃2, · · · , δx̃N ). The discretized Newton descent (64) is an infinitesimal time step
variant of the multipoint (Poincaré section) shooting equation for flows(53). In formulating
a variational method for periodic orbit searches in a 3-d generalized standard map, Tom-
paidis [249] also derived an expression similar to (64). In order to solve for the deformation
of the loop coordinates and period, δx̂ and δλ, we need to invert the [(N d + 1)×(N d + 1)]
matrix on the left hand side of (64).

In our numerical work, this matrix is inverted using the banded LU decomposition on the
embedded band-diagonal matrix, and the Woodbury formula [205] on the cyclic and border
terms. The LU decomposition takes most of the computation time and considerably slows
down the fictitious time integration. We speed up the integration by a new inversion scheme
which relies on the smoothness of the flow in the loop space. It goes as follows. Once we
have the LU decomposition at one step, we use it to approximately invert the matrix in the
next step, with accurate inversion achieved by the iterative approximate inversions [205]. In
our applications we find that a single LU decomposition can be used for many δτ evolution
steps. The further we go, the more iterations at each step are needed to implement the
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inversion. After the number of such iterations exceeds some given fixed maximum number,
we perform another LU decomposition and proceed as before. The number of integration
steps following one decomposition is an indication of the smoothness of the evolution, and
we adjust accordingly the integration step size δτ : the greater the number, the bigger the
step size. As the loop approaches a cycle, the evolution becomes so smooth that the step
size can be brought all the way up to δτ = 1, the full undamped Newton-Raphson iteration
step. In practice, one can start with a small but reasonable number of points, in order to get
a coarse solution of relatively low accuracy. After achieving that, the refined guess loop can
be constructed by interpolating more points, and can be processed with a more accurate
calculation in which δτ can be set as large as the full Newton step δτ = 1, recovering the
rapid quadratic convergence of the Newton-Raphson method.

It is essential that the smoothness of the loop is maintained throughout the calculation.
We monitor the smoothness by checking the Fourier spectrum of x̃(·, τ). An unstable
difference scheme for loop derivatives might lead to unbounded sawtooth oscillations [248].
An empirical local linear stability analysis (described in [212]) indicates that our scheme
is stable, and that the high frequency components do not generate instabilities.

3.4.2 Initialization and convergence

As in any other method, a qualitative understanding of the dynamics is a prerequisite to
successful cycle searches. We start by numerical integration with the dynamical system (48).
Numerical experiments reveal regions where a trajectory spends most of its life, giving us
the first hunch as to how to initialize a loop. We take the FFT of some nearly recurred orbit
segment and keep only the lowest frequency components. The inverse Fourier transform
back to the phase space yields a smooth loop that we use as our initial guess. Since any
generic orbit segment is not closed and might exhibit large gaps, the Gibbs phenomenon
can take the initial loop so constructed quite far away from the region of interest. We
deal with this problem by manually deforming the orbit segment into a closed loop before
performing the FFT. Searching for longer cycles with multiple circuits requires more delicate
initial conditions. The hope is that a few short cycles can help us establish an approximate
symbolic dynamics, and guess for longer cycles can be constructed by cutting and gluing the
short, known ones. For low dimensional systems, such methods yield quite good systematic
initial guesses for longer cycles [36].

An alternative way to initialize the search is by utilizing adiabatic deformations of
dynamics, or the homotopy evolution [42]. If the dynamical system (48) depends on a
parameter µ, short cycles might survive as µ varies passing through a family of dynamical
systems, giving in the process birth to new cycles through sequences of bifurcations. Most
short unstable cycles vary little for small changes of µ. So, a cycle existing for parameter
value µ1 can be chosen as the initial trial loop for a nearby cycle surviving a small change
µ1 → µ2. In practice, one or two iterations often suffice to find the new cycle.

A good choice of the initial loop significantly expedites the computation, but there are
more reasons why good initial loops are crucial. First of all, if we break the translational
invariance by imposing a constraint such as x̃1(s2, τ) = c, we have to make sure that both
the initial loop and the desired cycle intersects this Poincaré plane. Hence, the initial
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loop cannot be wildly different from the desired cycle. Second, in view of (58), the loop
always evolves toward a local minimum of the cost functional (59), with discretization
points moving along the ṽ − λv fixed direction, determined by the initial condition. If the
local minimum corresponds to a zero of the cost functional, we obtain a true cycle of the
dynamical flow (48). However, if the value of cost functional is not equal to zero at the
minimum while the gradient is zero, (64) yields a singular matrix Â. In such cases the
search has to be abandoned and restarted with a new initial loop guess. In the periodic
orbit searches of sect. 3.5 starting with blind initial guesses (guesses unaided by a symbolic
dynamics partition), such local minima were encountered in about 30% of cases.

3.4.3 Symmetry considerations

The system under consideration often possesses certain symmetries. If this is the case, the
symmetry should be both be feared for possible marginal eigendirections, and be embraced
as a guide to potential simplifications of the numerical calculation.

If the dynamical system equations (48) are invariant under a discrete symmetry, the
concept of fundamental domain [53, 50] can be utilized to reduce the length of the initial
loop when searching for a cycle of a given symmetry. In this case, we need to discretize only
an irreducible segment of the loop, decreasing significantly the dimensionality of the loop
representation. Other parts of the loop are replicated by symmetry operations, with the full
loop tiled by copies of the fundamental domain segment. The boundary conditions are no
longer periodic, but all that we need to do is modify the cyclic terms. Instead of using M1

and M2 in (63), we use M1Q and M2Q
−1, where Q is the relevant symmetry operation that

maps the fundamental segment to the neighbor that precedes it. In this way, a fraction of
the points represent the cycle with the same accuracy, speeding up the search considerably.

If a continuous symmetry is present, it may complicate the situation at first glance but
becomes something that we can take advantage of after careful checking. For example, for
a Hamiltonian system unstable cycles may form continuous families [120, 224], with one
or more members of a family belonging to a given constant energy surface. In order to
cope with the marginal eigendirection associated with such continuous family, we search
for a cycle on a particular energy surface by replacing the last row of equation (64) by an
energy shell constraint [37]. We put one point of the loop, say x̃2, on the constant energy
surface H(x̃) = E, and impose the constraint �H(x̃2) · δx̃2 = 0, so as to keep x̃2 on the
surface for all τ . The integration of (56) then automatically brings all other loop points to
the same energy surface. Alternatively, we can look for a cycle of given fixed period T by
fixing λ and dropping the constraint in the bottom line of (64). These two approaches are
conjugate to each other, both needed in applications. In most cases, they are equivalent.
One exception is the harmonic oscillator for which the oscillations have identical period but
different energy. Note that in both cases the translational invariance is restored, as we have
discarded the Poincaré section condition of sect. 3.2.2. As explained in [262], this causes no
trouble in numerical calculations.
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Figure 3: The Hénon-Heiles system in a chaotic region: (a) An initial loop L(0), and (b) the unstable
periodic orbit p of period T = 13.1947 reached by the Newton descent (60). (c) The exponential decrease
of the cost function, ln(F 2) ≈ −2.0502 τ + 6.0214.

3.5 Applications

We have checked that the iteration of (64) yields quickly and robustly the short unstable
cycles for standard models of low-dimensional dissipative flows such as the Rössler sys-
tem [210]. A more daunting challenge are searches for cycles in Hamiltonian flows, and
searches for spatio-temporally periodic solutions of PDEs. In all numerical examples that
follow, the convergence criterion is F 2 < 10−5.

3.5.1 Hénon-Heiles system and restricted three-body problem

First, we test the Hamiltonian version of the Newton descent derived in Sect. 3.3 by apply-
ing the method to two Hamiltonian systems, both with two degrees of freedom. In both
cases, our initial loop guesses are rather arbitrary combinations of trigonometric functions.
Nevertheless, the observed convergence is fast.

The Hénon-Heiles system [121] is a standard model in celestial mechanics, described by
the Hamiltonian

H =
1
2
(p2

x + p2
y + x2 + y2) + x2y − y3

3
. (65)

It has a time reversal symmetry and a three-fold discrete spatial symmetry. Figure 3 shows
a typical application of (60), with the Newton descent search restricted to the configuration
space. The initial loop, figure 3(a), is a rather coarse initial guess. We fix arbitrarily the
scaling λ = 2.1, that is, we search for a cycle p of the fixed period Tp = 13.1947, with no
constraint on the energy. Figure 3(b) shows the cycle found by the Newton descent, with
energy E = 0.1794, and the full discrete symmetry of the Hamiltonian. This cycle persists
adiabatically for a small range of values of λ; with λ changed much, the Newton descent
takes the same initial loop into other cycles. Figure 3(c) verifies that the cost functional
F 2 decreases exponentially with slope -2 throughout the τ = [0, 10] integration interval,
as predicted by (58). The points get more and more sparse as τ increases, because our
numerical implementation adaptively chooses bigger and bigger step sizes δτ .

In the Hénon-Heiles case, the accelerations ax, ay depend only on the configuration
variables x, y. More generally, the accelerations could also depend on ẋ, ẏ. Consider as an
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Figure 4: (a) An initial loop L(0), and (b) the unstable periodic orbit p of period Tp = 2.7365 reached
by the Newton descent (60), the restricted three body problem (66) in the chaotic regime, µ = 0.04.

example the equations of motion for the restricted three-body problem [242],

ẍ = 2ẏ + x − (1 − µ)
x + µ

r3
1

− µ
x − 1 + µ

r3
2

,

ÿ = −2ẋ + y − (1 − µ)
y

r3
1

− µ
y

r3
2

, (66)

where r1 =
√

(x + µ)2 + y2, r2 =
√

(x − 1 + µ)2 + y2. These equations describe the motion
of a test particle in a rotating frame under the influence of the gravitational force of two
heavy bodies with masses 1 and µ � 1 fixed at (−µ, 0) and (1−µ, 0) in the (x, y) coordinate
frame. The stationary solutions of (66) are called the Lagrange points, corresponding to
a circular motion of the test particle in phase with the rotation of the heavy bodies. The
periodic solutions in the rotating frame correspond to periodic or quasi-periodic motion of
the test particle in the inertial frame. Figure 4 shows an initial loop and the cycle to which
it converges, in the rotating frame. Although the cycle looks simple, the Newton descent
requires advancing in small δτ steps in order for the initial loop to converge to it.

In order to successfully apply the Hamiltonian version of the Newton descent (60), we
have to ensure that the test particle keeps a finite distance from the origin. If a cycle passes
very close to one of the heavy bodies, the acceleration can become so large that our scheme
of uniformly distributing the loop points in time might fail to represent the loop faithfully.
Another distribution scheme is required in this case, for example, making the density of
points proportional to the magnitude of acceleration.

3.5.2 Periodic orbits of Kuramoto-Sivashinsky system

The Kuramoto-Sivashinsky equation arises as an amplitude equation for interfacial insta-
bility in a variety of contexts [153, 228]. In 1-dimensional space, it reads

ut = (u2)x − uxx − νuxxxx, (67)

where ν is a “super-viscosity” parameter which controls the rate of dissipation and (u2)x is
the nonlinear convection term. As ν decreases, the system undergoes a series of bifurcations,
leading to increasingly turbulent, spatio-temporally chaotic dynamics.
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Figure 5: The Kuramoto-Sivashinsky system in a spatio-temporally turbulent regime (viscosity param-
eter ν = 0.015, d = 32 Fourier modes truncation). (a) An initial guess L1, and (b) the periodic orbit
p1 of period T1 = 0.744892 reached by the Newton descent. (c) Another initial guess L2, and (d) the
resulting periodic orbit p2 of period T2 = 1.184668.

If we impose the periodic boundary condition u(t, x+2π) = u(t, x) and choose to study
only the odd solutions u(−x, t) = −u(x, t), u(x, t) can be expanded in a discrete spatial
Fourier series [36],

u(x, t) = i
∞∑

k=−∞
ak(t)eikx, (68)

where a−k = −ak ∈ R . In terms of the Fourier components, PDE (133) becomes an infinite
ladder of ODEs,

ȧk = (k2 − νk4)ak − k
∞∑

m=−∞
amak−m . (69)

In numerical simulations we work with the Galerkin truncations of the Fourier series since
in the neighborhood of the strange attractor the magnitude of ak decreases very fast with
k, high frequency modes playing a negligible role in the asymptotic dynamics [192]. In this
way Galerkin truncations reduce the dynamics to a finite but large number of ODEs. We
work with d = 32 dimensions in our numerical calculations. In ref. [36], multipoint shooting
has been successfully applied to obtain periodic orbits close to the onset of spatiotemporal
chaos (ν = 0.03). In this regime, our method is so stable that big time steps δτ can be
employed even at the initial guesses, leading to extremely fast convergence. We attribute
this robustness to the simplicity of the structure of the attractor at high viscosity values.

The challenge comes with decreasing ν, with the dynamics turning more and more
turbulent. Already at ν = 0.015, the system is moderately turbulent and the phase space
portraits of the dynamics reveal a complex labyrinth of “eddies” of different scales and
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Figure 6: Level plot of the space-time evolution u(x, t) for the two spatio-temporally periodic solutions
of figure 5: (a) the evolution of p1, with start of a repeat after the cycle period T1 = 0.744892, and (b)
one full period T2 = 1.184668 in the evolution of p2.

orientations. While the highly unstable nature of orbits and intricate structure of the
invariant set hinder applications of conventional cycle-search routines, in this setting our
variational method shines through. We design rather arbitrary initial loops from numerical
trajectory segments, and the calculation proceeds as before, except that now a small δτ
has to be used initially to ensure numerical stability. Topologically different loops are very
likely to result in different cycles, while some initial loop guesses may lead to local nonzero
minima of the cost functional F 2. As explained in Sect. 3.4, in such cases the method
diverges, and the search is restarted with a new initial loop guess.

Two initial loop guesses are displayed in figure 5, along with the two periodic orbits
detected by the Newton descent. In discretization of the initial loops, each point has to be
specified in all d dimensions; here the coordinates {a1, a2} are picked so that topological
similarity between initial and final loops is visually easy to identify. Other projections from
d = 32 dimensions to subsets of 2 coordinates appear to make the identification harder, if
not impossible. In both calculations, we molded segments of typical trajectories into smooth
closed loops by the Fourier filtering method of Sect. 3.4. As the desired orbit becomes longer
and more complex, more sampling points are needed to represent the loop. We use N = 512
points to represent the loop in the (a)-(b) case and N = 1024 points in the (c)-(d) case. The
space-time evolution of u(x, t) for these two unstable spatio-temporally periodic solutions
is displayed in figure 6. As u(x, t) is antisymmetric on [−π, π], it suffices to display the
solutions on the x ∈ [0, π] interval.

3.6 Summary

In order to cope with the difficulty of finding periodic orbits in high-dimensional chaotic
flows, we have devised the Newton descent method, an infinitesimal step variant of the
damped Newton-Raphson method. Our main result is the PDE (56) which solves the
variational problem of minimizing the cost functional (59). This equation describes the
fictitious time τ flow in the space of loops which decreases the cost functional at uniform
exponential rate, see (58). Variants of the method are presented for special classes of
systems, such as the Hamiltonian systems. An efficient integration scheme for the PDE is
devised and tested on the Kuramoto-Sivashinsky system, the Hénon-Heiles system and the
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restricted three-body problem.

Our method uses information from a large number of points in phase space, with the
global topology of the desired cycle protected by insistence on smoothness and a uniform
discretization of the loop. The method is quite robust in practice.

The numerical results presented here are only a proof of principle. We do not know to
what periodic orbit the flow (56) will evolve for a given dynamical system and a given initial
loop. Empirically, the flow goes toward the “nearest” periodic orbit, with the largest topo-
logical resemblance. Each particular application requires much work in order to elucidate
and enumerate the relevant topological structures. The hope is that the short spatio-
temporally periodic solutions revealed by the Newton descent searches will serve as the
basic building blocks for systematic investigations of chaotic and perhaps even “turbulent”
dynamics.
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CHAPTER IV

COMPLEX GINZBURG-LANDAU EQUATION

From this chapter on, we will study pattern formation in 1 − d spatially extended systems
from a periodic orbit theory point of view. The Kuramoto-Sivashinsky equation (KSe)
and the complex Ginzburg-Landau equation (CGLe) are the prototyped equations in this
investigation. In this chapter, we emphasiz the important role played by coherent structures
in the dynamics of the CGLe which can be defined as the steady or traveling wave solutions.
Basic properties of the CGLe are reviewed in sect. 4.1, and various coherent structures are
defined and their importance is discussed in sect. 4.2. A new formulation of the steady
solutions of the CGLe is presented in sect. 4.3 by which we proved the existence of the
modulated-amplitude waves (MAWs) near the onset of instability. We compare the obtained
analytical expression with the numerical calculation and discuss their stability as well in
sect. 4.5.

4.1 Review

4.1.1 Introduction

The complex Ginzburg-Landau equation (CGLe) is a generic amplitude equation describing
Hopf bifurcation in spatially extended systems, i.e., Io systems [45], with reflection symme-
try [135, 222, 256]. It is of great interest due to its genericity and applications to onset of
wave pattern-forming instabilities [45] in various physical systems such as fluid dynamics,
optics, chemistry and biology. It exhibits rich dynamics and has become a paradigm for
studying transitions to spatiotemporal chaos.

Consider the 1 − d CGLe for the complex amplitude field A(x, t):

At = µA + (1 + iα)Axx − (1 + iβ)|A|2A , (70)

where A(x, t) : R
2 �→ C, and µ, α, β ∈ R, x ∈ D. D is the spatial domain on which the

equation is defined. At, Axx denote repectively the first temporal derivative and the second
spatial derivative of A. Interesting domains for us are either the whole real axis or a finite
box of length L with periodic boundary conditions. µ is the control parameter. Only µ > 0
is considered as we study the supercritical Ginzburg-Landau equation; one could set µ = 1
by appropriate rescaling of the time, space and amplitude, but we keep it as a parameter for
closer connection with experimental results and literature. Coefficients α and β parametrize
the linear and nonlinear dispersion.

If both α and β are set to 0, we recover the real Ginzburg-Landau equation (GLe) in
which only the diffusion term and the stabilizing cubic term compete with each other and

50



CHAPTER 4. COMPLEX GINZBURG-LANDAU EQUATION 51

with the linear term. A Lyapunov functional exists in that case [45] and the GLe behaves
like a gradient system. Another limit — the nonlinear Schrödinger equation — results
from setting α, β → ∞; we then have an integrable nonlinear PDE with infinitely many
conserved quantity. For parameter values in the intermediate range, the CGLe inherits
partial properties of the gradient system and the conserved system, and long-time behavior
of the CGLe can vary from stationary to periodic and to spatiotemporal chaos [225]. We
will concentrate on the stationary solutions of the CGLe in a finite box of length L with
periodic boundary conditions, and the case α �= β. Stationary solutions are the simplest
non-trivial solutions, related to propagating solutions by a change of frame of reference
(x, t) �→ (x − vt, t) with fixed v ∈ R.

4.1.2 Symmetries and Bekki-Nozaki solutions

Equation (70) is invariant under temporal and spatial translations. Moreover, it is invariant
under a global gauge transformation A → A exp(iφ), where φ ∈ R, and under x → −x
reflection. As a consequence, it preserves the parity of A, i.e., if A(−x, 0) = ±A(x, 0), then
A(−x, t) = ±A(x, t) for any later time t > 0. If A(x, t) has no parity, then A(−x, t) gives
another solution.

For a spatially infinite system there exists a continuous family of traveling holes - the
Bekki-Nozaki solution [15]. If we set ξ = x − ct, the position in the moving frame (c is the
velocity to be determined later), then the Bekki-Nazakisolution is

A =
b1e

κξ + b2e
−κξ

eκξ + e−κξ
exp

(
i

2

∫ ξ

0
(κ+ + κ− tanhκs) ds − iΩt

)
, (71)

where

Ω = αµ − c
κ1κ2√

µ
, c = (κ1 + κ2)(α − β),

κ± = κ1 ± κ2 , κ = −κ−
2α

; |bj |2 = µ − κ2
j , for j = 1, 2,

σ ≡ arg(
b2

b1
) = − arctan

(
2κ+κ−

p(α − β) − 1
p(1 + αβ)

(1 + β2)κ2
+ − (p2 + p−2)(1 + α2)κ2−

)
,

p = −q ± (2 + q2)
1
2 , q = −3

2
1 + αβ

α − β
.

The asymptotic wave-numbers (at |κξ| � 1)κ1 and κ2 satisfy

(κ1 + κ2)2

a2
1

+
(κ1 − κ2)2

a2
2

= 1,

where

a2
1 = 4µ

(
1 − 3p(1 + β2)

(α − β)(1 + p2)

)−1

, a2
2 = 4µ

(
1 − 3(1 + α2)

p(α − β

)−1

.

A branch of p should be chosen so as to make a2
1 and a2

2 to be positive. The solution is
highly unstable for α, β values we are considering here.
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Figure 7: Marginal stability curve (MS) and Eckhaus instability curve (E) defining regions where plane
waves solutions exist in the CGLe (inside (MS)), and are stable when 1 + αβ > 0 (inside (E)). Case I
corresponds to the wave of maximal possible wavenumber and Case II to the wave with q = 0 and the
maximal amplitude.

The one-parameter family of the hole solutions strongly suggest the existence of a hidden
symmetry in the CGLe [259]. Inclusion of higher order terms, such as a quintic term δ|A|4A
eliminates this family of solutions [67]. So, the family is structurally unstable, and the
hidden symmetry appears specific to the cubic CGLe. In the stationary case, the existence
of the solitory solution and more complicated solutions can be inferred by an application of
the counting argument associated with the reflection symmetry [14].

4.1.3 Stokes solutions and their stability

The global phase invariance implies that the CGLe has nonlinear plane wave solutions of
the form

A(x, t) = R0 exp(i(qx − ωt)) , (72)

where R2
0 = µ − q2 is the square of the amplitude, ω = µβ + (α − β)q2 is the frequency,

and q ∈ R with q2 ≤ µ is the wavenumber. They are called Stokes solutions [3] and are
parametrized by the wavenumber q. The two limit cases of interest to us are highlighted
on figure 7: a plane wave of wavenumber µ1/2 and of vanishing amplitude (case I), and the
wave with zero wavenumber and maximum amplitude µ (case II). In case II, the solution
oscillates uniformly in space; we call it the homogeneously oscillating state (HOS).

For the infinite system, the Benjamin-Feir-Newell [187] criterion states that all plane
wave solutions are unstable with respect to long wavelength perturbations, i.e., of wavenum-
ber k → 0) if 1 + αβ < 0. If 1 + αβ > 0, we have to consider the Eckhaus stability criterion
which states that only a band of wavenumbers are stable against long wavelength pertur-
bations:

q2 < q2
E ≡ (1 + αβ)µ

3 + αβ + 2β2
. (73)
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For a finite periodic system the wavenumbers for both the original states and the pertur-
bations are quantized. In this context, the above criteria were re-examined by Matkowsky
and Volpert using linear stability analysis [171].

4.1.4 Low-dimensional behavior of the CGLe

The CGLe describes a dynamical system with infinitely many degrees of freedom. But in
either experiments or numerical simulations, only a finite number of patterns play a role
in the long-time dynamics. For the CGLe in a periodic box, a global attracting set exist
towards which all the solutions approach in a finite time. An upper bound on the number of
Fourier modes needed to give a complete knowledge of the asymptotic dynamics is derived
in ref. [69]. The rest of the infinitely many modes are determined by geometric constraints
that define the finite-dimensional inertial manifold in the phase space. Thus, the global
attractor which lies on the inertial manifold also has a finite dimension. By estimating
the Lyapunov exponents on the asymptotic trajectory, similar result was also claimed in
ref. [95]. In the even solution space, the magnitude of the Mth mode of the global attractor
decays faster than any algebraic order of M−1 [66].

Though the above analytic results provide a rigorous justification for simulating the
CGLe dynamics with finite Gälerkin truncations, these estimated bounds on the number
of effective modes are usually much higher than what is needed for actual numerical cal-
culations. In practice, we always try to use the smallest number of modes, sufficient to
capture the dynamics of interest. Near the onset of chaotic behavior, just a few modes are
important and enough to give a complete description of bifurcation sequences [66, 163]. In
the chaotic region, a common approach to select the optimal basis is the Karhunen-Loeve or
proper orthogonal decomposition (POD) which orders the orthogonal linear basis according
to their relative importance [209] by checking the 2-point correlation matrix on the strange
attractor. This method does not utilize geometrical information about the layout of inertial
manifold, and is inadequate for our purposes.

In a periodic box, we can clearly see how the destabilization of low wavenumber modes
leads to spatiotemporal chaos. When the size L is small, homogeneous oscillatory state
(HOS) is stable. The first instability generates stationary modulated amplitude waves
(MAWs). They partially break the space translational symmetry but retain the parity. The
ensueing pitchpork bifurcation breaks the parity of |A| and sets the whole profile moving.
As the system size increases further, spatiotemporal chaos arises and both the amplitude
and phase of A fluctuate irregularly. Bifurcations in the even solution space have been
studied in great detail [66, 163]. Similarly to the Lorenz attractor [232], the first strange
attractor is generated through a homoclinic explosion [163].

4.1.5 Phase chaos versus defect chaos

In the infinite domain all the plane waves become unstable above the Benjamin-Feir (BF)
line (1 + αβ < 0) [22], and the system becomes chaotic. There are two types of chaos in
the chaotic region: phase chaos and defect (or amplitude) chaos. In the phase chaos, the

Y. Lan - PhD thesis - version 0.8 - May 18, 2004 CGL - 17apr2004, printed May 24, 2004



CHAPTER 4. COMPLEX GINZBURG-LANDAU EQUATION 54

0 1 2 3 4
−4

−3

−2

−1

0

α

β

Defect Chaos 

Phase Chaos 
L

BF
 

L
BF

 

BC 
L

1
 L

2
 

L
3
 

Figure 8: Phase diagram of the CGLe. The line LBF is the locus of the Benjamin-Feir instability. L1,
L2 and L3 intersect at the point C∗. Below L1 and L3, only defect chaos is observed. The region enclosed
by L2, L3 and LBF is a bichaotic region (marked BC). Note that L2 crosses LBF.

amplitude of A is bounded away from zero, while in the defect chaos |A| reaches zero at
isolated space-time points. When |A(x, t)| = 0, we say that a defect forms; at the defect
point the phase of A is not defined. The Bekki-Nozaki solutions are believed to play an
important role in the defect chaos. Two characteristics can be used to distinguish phase
chaos and defect chaos [250, 182, 252]: the defect density nd which is the space-time average
of the number of defects that appear in the system, and the phase winding number

ν =
1
2π

∫ L

0
∂xφ(x, t) dx

which represents the phase change of A over the interval. In the defect chaotic region,
nd �= 0 and ν = 0 but in the phase chaotic one nd = 0 and ν �= 0 . There exists a line
in the α, β parameter space below which only defect chaos is present [225] (see figure 8).
The line consists of two parts: L1 and L3 (we use the notation of ref. [225]). Across L1

the transition is continuous [225, 76]. Near L3, there is a bichaotic region, where both the
phase chaos and the defect chaos are metastable and they may transform to each other by
finite-amplitude perturbations. The L1 line can be continued to L2 which crosses the BF
line. A spatiotemporal intermittency region [34] lies below the L2 line where the metastable
states are plane waves and defect chaos.

Near the BF line in the phase chaotic region, the states result from a Hopf bifurction
of the HOS when the long-wavelength components become linearly unstable. As the inter-
action between different modes is very weak, each mode can be viewed as an independent
oscillator with the amplitude entrained to the phase (see sect. 5.1 in Chapter 5), and thus
phase equations can be developed to describe the evolution of the system [152]. The most
commonly used one is the Kuramoto-Sivashinsky equation (KSe) [153, 228]. In the defect
chaos region, the interaction between modes are so strong that |A| is brought down to zero
at discrete space-time points where the winding number changes through phase-slip process.
In this case, the defect dynamics sets in and phase equation fails [219].
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4.2 Coherent structures and MAWs

In extended systems, chaotic states are usually a juxtapostion of patches of regular patterns
called “coherent structures” (CS) [259]. The CS play a very important role in the study
of pattern formation and dynamical properties of the CGLe. In the laminar case, the CS
includes uniform states, plane waves, pulses, fronts, holes. In the chaotic case, the overall
pattern consists of near-regular patches connected by localized defects or interfaces. After
doing the following substitution in (70),

A(x, t) → A(x − ct, t)ei(kx−ωt) ,

we get
At = (µ − k2 + iω)A + (c + 2ik)Ax + (1 + iα)Axx − (1 + iβ)|A|2A . (74)

The coherent structures we will discuss below are the steady solutions of (74), i.e., At = 0.
There exists a similarity transformation which maps steady states to each other for different
α , β values in the parameter space along the constant C-curve

C =
α − β

1 + αβ
.

k , c , A and ω have to change accordingly during the process while the shape of the magni-
tude profile of A does not change.

In the steady equation, if we use polar coordinates,

A(x, t) = R(x)eiφ(x) ,

a 3-D nonlinear dynamical system is obtained [259]

Rx = ψ

ψx = Rκ2 +
1 + αβ

1 + α2
R3 + (2kR − cα

1 + α2
)κ − c

1 + α2
ψ +

k2 + α2k2 − µ − αω

1 + α2
R

κx =
β − α

1 + α2
R2 +

αµ − ω

1 + α2
(

cα

1 + α2
− 2k)

ψ

R
− 2κψ

R
− c

1 + α2
κ , (75)

where ψ = Rx is the gradient of R and κ = φx is the local wavenumber. By redefining
ω and κ, the parameter k can be set to zero. There are essentially two free parameters:
the frequency ω and the group velocity c. when c = 0, (75) becomes an equation for the
stationary solution of the CGLe and is invariant under the transformation (R, ψ, κ, x) →
(R,−ψ,−κ,−x).

The equilibrium points of (75) are plane waves described in sect. 4.1.3. The homo-
clinic [253] and heteroclinic [259] connections between equilibria correspond to localized
coherent structures. The Nozaki-Bekki solutions [15] belong to this category; they connect
asymptotic plane waves with different wavenumbers. In large domain numerical simu-
lations, near-coherent structures are frequently observed in the intermittency or chaotic
regimes [225, 257, 259, 34, 4, 254, 255, 193, 15] and play an essential role in the pattern
formation process.

Recent numerical studies reveal another kind of coherent structure: modulated ampli-
tude waves (MAWs) for the CGLe [30]. They correspond to limit cycles of (75). When
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c = 0, MAWs are stationary. The formation of MAWs is the first instability encoun-
tered when a plane wave state crosses the Eckhaus or Benjamin-Feir stability line. The
MAW structure is frequently observed in experiments [136, 94], and is considered a key
to interpretation of patterns and bifurcations exhibited during the system’s transition to
spatiotemporal chaos [28, 27, 30].

In the following, we reformulate the equation for steady solutions, and prove the exis-
tence of MAWs for case I and II. The stability analysis indicates that the MAWs arising
in case I are unstable but the MAWs in case II are stable. By comparing with numerical
calculations, we find that the later ones are indeed the stationary waves observed after the
first bifurcation.

4.3 Reformulation of the problem

Since we are only interested in the steady solutions of the CGLe, we substitute the ansatz

A(x, t) = R(x) exp(iφ(x) − iωt), (R, φ) ∈ R
2 (76)

into (70). We then have

(1 + α2)Gx = K ≡ (β − α)R4 − (ω − µα)R2 (77)
(1 + α2)G2 = M ≡ (1 + α2)R3Rxx + (αω + µ)R4 − (1 + αβ)R6 . (78)

where G ≡ φxR2 is reminiscent of “angular momentum”. Note that if α = β, this “angular
momentum” is conserved — it is constant in space — provided that ω = µα. In that case,
(78) can be solved in terms of elliptic functions [160]. We will only consider the case α �= β
in the following. Equations (77) and (78) are invariant under (G, x, R) → (−G,−x,±R).
Note that for plane waves, K = 0 and G is a constant. If K is not always zero, differentiating
(78) and dividing the result by (77) gives

2G = Mx/K , (79)

and by (78)

M =
1 + α2

4
M2

x

K2
. (80)

Furthermore, we can factorize R2 from Mx and K and write Mx = R2N and K = R2P ,
where

N ≡ (1 + α2)
1
2
(R2)xxx + (αω + µ)2(R2)x − (1 + αβ)3R2(R2)x

P ≡ (β − α)R2 − (ω − µα) . (81)

The last relation can be used to express R2 in terms of P :

R2 =
(ω − µα) + P

β − α
= e + dP = R2

0 +
P

β − α
, (82)
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where d ≡ 1/(β − α) and e ≡ (ω − µα)/(β − α).

Note that e = R2
0 is the square of the homogeneous amplitude R0(q, ω) of the Stokes

plane wave solution (72) of frequency ω and wavevector q(ω). P then appears as the
modulation of the amplitude squared with respect to the Stokes solution, and so it is an
appropriate variable to describe a MAW.

Substituting K and Mx into (80), we have

1 + α2

4
N2

P 2
= M . (83)

If P �= 0 (83) is equivalent to (77) and (78). It is easy to check that if we regard (79) as a
definition of G, and use K, M, N, P expressed in terms of R, equation (77) and (78) will be
recovered as a result of (80) and (83). Differentiating both sides of (83) results in

1 + α2

2
(PNx − NPx) = R2P 3 . (84)

In this step we have extended the solution set of (83), because as we integrate (84) back,
we get

1 + α2

4
N2

P 2
= M + C , (85)

where C is an integration constant. Only for C = 0 a solution of (84) is a solution of (83).
For this reason, when obtaining solutions of (84), we have to check the consistency condition

1 + α2

4
N2

P 2
− M = 0 (86)

to make sure that we have a solution of (83), thus a solution of (77) and (78). Note that
if K vanishes identically we have to go back to (77) and (78), since in that case (83) is not
well defined. Let us rewrite N in terms of P :

N =
2

1 + α2
(aPxxx + bPx + cPPx) , (87)

where a, b, c are constants

a ≡ (1 + α2)2

4(β − α)

b ≡ 1 + α2

2

(
2(αω + µ)

β − α
− 3(1 + αβ)(ω − µα)

(β − α)2

)
(88)

c ≡ −3(1 + αβ)(1 + α2)
2(β − α)2

.

We use (87) and (82) to rewrite (84) using only P and its spatial derivatives:

P (aPxxx + bPx + cPPx)x − Px(aPxxx + bPx + cPPx) = (dP + e)P 3 (89)

Note that this equation contains even numbers of derivatives of P in each term on the left
hand side, and also that the powers of P increase while the derivatives decrease. We now
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rewrite the equation in a form which takes advantage of this structure. For example, the
following equation is equivalent to (89) for any real λ:

P (aPxxx + bPx + (c + λ)PPx)x − Px(aPxxx + bPx + (c + λ)PPx)
= P 2(λPxx + dP 2 + eP ) ,

or, put in another form and introducing another real parameter k:(
(aPxx + bP + c+λ

2 P 2)x

P

)
x

= λPxx + dP 2 + ẽP +
a

λ
kP ,

where we have written ẽ + a
λk = e.

In this equation, we have three free parameters: besides ω, introduced by the ansatz (76)
as the carrier frequency of the solution, we have introduced free parameters λ and k. We
now fix λ by imposing the condition

a

λ
=

b

ẽ
=

c + λ

2d
, (90)

which allows us to write the equation in a more suggestive form:(
(λPxx + dP 2 + ẽP )x

P

)
x

=
λ

a
(λPxx + dP 2 + ẽP ) + kP ,

or more concisely,(
M̃x

P

)
x

=
λ

a
M̃ + kP , where M̃ ≡ λPxx + dP 2 + ẽP . (91)

This equation will lead to the 4-D ODE of section 4.4.

λ is determined by (90):
λ2 + cλ − 2ad = 0 . (92)

The discriminant of (92) is

∆ = c2 + 8ad

=
(

1 + α2

2(β − α)

)2 (
9(1 + αβ)2

(β − α)2
+ 8

)
.

So ∆ > 0 for any real values of α and β, and the quadratic equation (92) always has two
real roots

λ =
3(1 + αβ)(1 + α2)

4 (β − α)2
± 1 + α2

4(β − α)2
√

9(1 + αβ)2 + 8(β − α)2 (93)

Note that λ is a function of α and β only. In some applications [204], the two values of λ
correspond to two distinct solutions of the CGLe. In our case, λ is an intermediate variable
used in the derivation and the proofs, but our solutions to the CGLe do not distinguish the
two values of λ.

Y. Lan - PhD thesis - version 0.8 - May 18, 2004 CGL - 17apr2004, printed May 24, 2004



CHAPTER 4. COMPLEX GINZBURG-LANDAU EQUATION 59

4.4 4-D dynamical system and the existence of periodic so-
lutions

Let us take τ as the spatial variable, P = P (τ) in (81), and rewrite (91) as a system of first
order equations in τ . With Ñ = M̃τ/P and Q = Pτ , from (91) we have



˙̃M = ÑP
˙̃N = λ

aM̃ + kP

Ṗ = Q

Q̇ = 1
λ(M̃ − dP 2 − ẽP )

, (94)

where the dot represents the derivative with respect to the spatial variable τ .

It is easy to check that P ≡ 0 is a solution of the original equations (77) and (78),
corresponding to the plane wave solution of the CGLe with frequency ω. We will study the
behavior near P = 0 and prove the existence of periodic solutions for small P . In the CGLe,
this corresponds to a weakly modulated amplitude wave which bifurcates from a plane wave
solution. If P ∼ ε, where ε is a small parameter, so are M̃, Ñ , Q by their definitions. Write

(M̃, Ñ , P, Q) = (εx, εy, εz, εw)

and set k = k1 + εk2. Substituting these into the 4-D system, we have

d

dτ




x
y
z
w


 = A




x
y
z
w


 + ε




y z
k2 z
0

− d
λz2


 , where A =




0 0 0 0
λ
a 0 k1 0
0 0 0 1
1
λ 0 −ẽ

λ 0


 .

The linear part A describes the behavior of the system in the neighborhood of the trivial
fixed point (0, 0, 0, 0). Note that the system is invariant under (t, y, w) → −(t, y, w). We will
use this property to simplify our analysis. Moreover, this system defines an incompressible
flow since ∇ · �X = 0, where �X = (x, y, z, w). It follows from (85) that the system has
one integration constant C. This constant induces a foliation of the phase space into three-
dimensional manifolds. Physical solutions, i.e., the solutions of the original CGLe, are
restricted to C = 0, the manifold that satisfies the consistency condition (86).

These properties strongly restrict the possible distributions of eigenvalues of A. We
restrict our analysis to the case ẽ/λ > 0. In that case, A has eigenvalues {0, 0, iω1,−iω1}
with ω1 =

√
ẽ/λ, and periodic solutions or MAWs can exist, as we will prove in the following.

The evolution of the system respects the constant C foliation: if the solution is on a constant
C manifold at initial time, it remains there for any later time.

We now discuss the condition ẽ/λ > 0 in terms of an instability of the underlying plane
wave. We can rewrite ẽ/λ using (88) and (90). Assuming that the solution we are searching
for is close to a plane wave, we can use the wavenumber q instead of the frequency ω, using
the dispersion relation (72) for plane waves:

ẽ

λ
=

b

a
=

2
1 + α2

[
2(αω + µ) − 3(1 + αβ)(ω − µα)

β − α

]
(95)

=
2

1 + α2

[
(3 + αβ + 2α2)q2 − (1 + αβ)µ

]
.
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Figure 9: Left: wavenumber distribution of stationary MAWs in the (α, β) plane. In (BFS), MAWs
exist if q2 > q2

M. In (M1), MAWs exist ∀q. In (M2), MAWs exist if q2 < q2
M. Right: regions of existence

of MAWs in the (q, µ) plane in the Benjamin-Feir-Newell stable regime ((BFS) region). (MS) is the
marginal stability curve, (E) is the Eckhaus instability curve and (M) is existence curve defined by (96).
Stationary MAWs exist outside (M).

If we write
q2
M ≡ (1 + αβ)µ

3 + αβ + 2α2
, (96)

we have

ẽ

λ
> 0 ⇔

∣∣∣∣∣∣
q2 > q2

M if (1 + αβ) > 0
q2 < q2

M if (1 + αβ) < −2(1 + α2)
∀q ∈ [−√

µ,
√

µ] if − 2(1 + α2) < 1 + αβ < 0
. (97)

The corresponding regions are illustrated on Fig. 9. Note that qM(α, β, µ) = qE(β, α, µ).
If |α| = |β|, the positivity of ẽ/λ is assured when the corresponding plane wave is Eck-
haus unstable. If |α| �= |β|, the positivity does not coincide anymore with the Eckhaus
criterion; this is not surprising considering that we do not restrict our analysis to long
wavelength perturbations of plane waves, but that the solutions we are seeking may have
any wavenumber.

In the following we distinguish two cases. In the first case eigenvalue 0 has a simple
elementary divisor, i.e., has two distinct eigenvectors [112]. This coincides with case I: the
MAW solution bifurcates from the A = 0 state, with ω ∼ µα and hence ẽ/λ ∼ 4µ > 0, for
µ > 0. In the second case, eigenvalue 0 has only one eigenvector. This coincides with case
II: the MAW is superimposed over a plane wave with ω � µβ, so q � 0, and

ẽ

λ
� −2µ(1 + αβ)

1 + α2
> 0,

where the positivity is insured if the system is Benjamin-Feir-Newell unstable, (1+αβ) < 0.

In terms of M̃, Ñ , P, Q, the consistency condition (86) can be written as

(1 + α2)M =
(a

λ
Ñ − λQ

)2
(98)
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where in new variables

M =
d(1 + α2)

2λ
(d P + e)(M̃ − d P 2 − ẽ P ) − d2(1 + α2)

4
Q2 +

(αω + µ)(d P + e)2 − (1 + α β)(d P + e)3 .

Recalling (78), we may express G by

G =
a
λÑ − λQ

1 + α2
. (99)

Here we are allowed to fix the sign of the right hand side expression because of the (G, x) �→
(−G,−x) reflection symmetry of (77) and (78).

4.4.1 Case I

We want the eigenvalue 0 to have non-degenerate eigenvectors, for this, we set

λ
a
1
λ

=
k1

− ẽ
λ

, i.e., k1 = −λẽ

a
.

Consequently, we have
e = ẽ +

a

λ
k =

εa

λ
k2 . (100)

Notice that e ∼ 0 to the zeroth order, so R0 ∼ 0 and ω ∼ µα, which means that the
solution to be considered bifurcates from the zero solution A = 0, corresponding to a plane
wave around the marginal stability curve, with wavenumber q ∼ ±µ1/2. This solution is
therefore outside the Eckhaus stability region when 1 + αβ > 0.

The four eigenvectors of A are:


0
1
0
0







ẽ
0
1
0







0
−ik1ω

−1
1

1
iω1







0
ik1ω

−1
1

1
−iω1


 .

Let

D =




0 ẽ 0 0
1 0 0 λ2

a
0 1 1 0
0 0 0 1


 , D−1 =




0 1 0 −a−1λ2

ẽ−1 0 0 0
−ẽ−1 0 1 0

0 0 0 1


 ,

and �̃X ≡ (x̃, ỹ, z̃, w̃) = D−1 �X. The dynamical equations for the new variables become

d

dτ
�̃X = M(ω1)

�̃X + ε




k2(ỹ + z̃) + λd
a (ỹ + z̃)2

1
ẽ (x̃ + λ2

a w̃)(ỹ + z̃)
−1

ẽ (x̃ + λ2

a w̃)(ỹ + z̃)
− d

λ(ỹ + z̃)2


 ,
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where

M(ω1) = D−1AD =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −ω2

1 0


 .

The angular frequency of the solution Ω should be close to ω1, Ω2 = ω2
1 + εγ, with the

shift γ to be determined later. Next, we change variables to:


x̃ = x1

ỹ = x2

z̃ = z1 sin Ωτ + z2 cos Ωτ
w̃ = Ωz1 cos Ωτ − Ωz2 sin Ωτ

(101)

The 4-D system of equations then takes form:

ẋ1 = ε

[
k2(x2 + z1 sin Ωτ + z2 cos Ωτ) +

λd

a
(x2 + z1 sin Ωτ + z2 cos Ωτ)2

]

ẋ2 =
ε

ẽ

[
x1 +

Ωλ2

a
(z1 cos Ωτ − z2 sin Ωτ)

]
(x2 + z1 sin Ωτ + z2 cos Ωτ)

ż1 =
ε

Ω

[
−d

λ
(x2 + z1 sin Ωτ + z2 cos Ωτ)2 cos Ωτ

+γ(z1 sin Ωτ + z2 cos Ωτ) cos Ωτ

−Ω
ẽ

(
x1 +

Ωλ2

a
(z1 cos Ωτ − z2 sin Ωτ)

)
(x2 + z1 sin Ωτ + z2 cos Ωτ) sin Ωτ

]

ż2 =
ε

Ω

[
d

λ
(x2 + z1 sin Ωτ + z2 cos Ωτ)2 sin Ωτ (102)

−γ(z1 sin Ωτ + z2 cos Ωτ) sin Ωτ

−Ω
ẽ

(
x1 +

Ωλ2

a
(z1 cos Ωτ − z2 sin Ωτ)

)
(x2 + z1 sin Ωτ + z2 cos Ωτ) cos Ωτ

]

The proof of the existence of weak MAWs close to P = 0 relies on a series of theorems
from J. Hale’s monograph [112]. We reproduce the relevant theorems in appendix ??, and
refer to them as the need arises.

Note that the transformation (τ, x1, x2, z1, z2) → (−τ,−x1, x2,−z1, z2) leaves the system
(102) invariant. So, by definition C.0.1 of appendix ?? the system has the property E with
respect to Q, with

Q = diag(−1, 1,−1, 1) .

As we are interested only in the solutions with definite parity, we may start the iteration
with the vector

�X0 = (0, a2, 0, a4) .

According to Theorem C.0.4, our solution z(τ, �X0, ε) has the property

Qz(−τ, �X0, ε) = z(τ, �X0, ε) ,
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which means that our solutions are either symmetric or antisymmetric. According to Theo-
rem C.0.5, the second and the fourth determining equations are always zero for this starting
vector. For the first and the third determining equations, the zeroth order solution of �̃X ,
i.e., �X0, may be substituted in, and we get

k2a2 +
λd

a
(a2

2 +
1
2
a2

4) = 0 (103)

γ

2Ω
a4 +

λ2Ωa2a4

2aẽ
− d

λΩ
a2a4 = 0 . (104)

From (104), we have two possibilities: either a4 = 0 or

γ + a2

(
λ2Ω2

aẽ
− 2d

λ

)
= 0 . (105)

When a4 = 0, using �X0 = (0, a2, 0, 0) in (102) leads to a trivial constant solution. In
the following, we consider only the second case (105). We can solve (103) and (105) for γ
and a4 and prove that the system (102) has periodic solutions. Note that we have three
free parameters ε, a2, k2. But as we will see further, ε and a2 are always combined as εa2

in the first approximation controlling the amplitude and the period of the solution, and
the combination will therefore be regarded here as one single free parameter. For general
periodic solutions without parity, a2 can be interpreted as a phase control parameter, i.e.,
a parameter giving the initial location on the periodic orbit at τ = τ0. Here, because we
only consider symmetric solutions, the translational symmetry of the autonomous system is
broken, and that is the reason why ε and a2 combine into a single parameter. The remaining
parameter k2 can be chosen freely, for example as to satisfy the consistency condition (98),
which, when the zeroth order solution is substituted, becomes at order (ε2):

−d2

4
Ω2 a2

4 + µ

(
da2 +

k2a

λ

)2

= 0 . (106)

At zeroth order, Ω2 = ω2
1 = 4µ and ẽ = 4µλ. Solving the system of equations (103),

(105) and (106), we get 


k2 = − 3λ
a da2

γ = c
aa2

a4 = ±2a2

.

We can write out the Jacobian for those three equations explicitly:

J =


 a2 0 λd

a a4

0 1 0
2µa
λ (da2 + k2a

λ ) 0 −d2

2 Ω2a4


 .

The determinant of this Jacobian is

det J =
1
2
d2Ω2a2a4 �= 0 , a2 �= 0 .

We now invoke theorem C.0.2, reproduced in Appendix A, and conclude our proof that
system (77) and (78) has periodic solutions near P = 0. We shall show that in this case
the periodic solutions contain defects and give their approximate analytic expressions in
section 4.5.
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4.4.2 Case II

Eigenvalue 0 has only one eigenvector. In this case, we assume that λ
a ẽ + k1 �= 0 to the

zeroth order in ε, so without loss of generality we can choose k2 = 0. Then λ
ae = λ

a ẽ + k1.

Implementing the transformation �X = D �̃X with

D =




0 ẽ 0 0
1 0 0 −k1ω

−2
1

0 1 1 0
0 0 0 1




we have

d

dτ
�̃X = M(ω1)

�̃X + ε




−d
ẽk1(ỹ + z̃)2

1
ẽ (x̃ − k1

λ
ẽ w̃)(ỹ + z̃)

−1
ẽ (x̃ − k1

λ
ẽ w̃)(ỹ + z̃)

− d
λ(ỹ + z̃)2


 ,

where

M(ω1) = D−1AD =




0 λe
a 0 0

0 0 0 0
0 0 0 1
0 0 −ω2

1 0


 .

As in case I, let Ω2 = ω2
1 + εγ and perform the same transformation (101) into variables

x1, x2, z1, z2. We then obtain a 4-D system similar to (102). However, in the equation for
ẋ1, there is an ε-free term. In order to use the successive approximation method, further
transformations are required. Let ρ ∈ R such that ρ2 = ε. With the transformation
x2 → ρx2, ε → ρ2 we recover the standard form

ẋ1 =
ρλe

a
x2 − ρ2k1

d

ẽ
(ρx2 + z1 sin Ωτ + z2 cos Ωτ)2

ẋ2 =
ρ

ẽ

[
x1 − k1

Ωλ

ẽ
(z1 cos Ωτ − z2 sin Ωτ)

]
(ρx2 + z1 sin Ωτ + z2 cos Ωτ)

ż1 =
ρ2

Ω

[−d

λ
(ρx2 + z1 sin Ωτ + z2 cos Ωτ)2 cos Ωτ (107)

+γ(z1 sin Ωτ + z2 cos Ωτ) cos Ωτ (108)

−Ω
ẽ

(
x1 − Ωλ

ẽ
k1 (z1 cos Ωτ − z2 sin Ωτ)

)
(ρx2 + z1 sin Ωτ + z2 cos Ωτ) sin Ωτ

]

ż2 =
ρ2

Ω

[
d

λ
(ρx2 + z1 sin Ωτ + z2 cos Ωτ)2 sin Ωτ

−γ(z1 sin Ωτ + z2 cos Ωτ) sin Ωτ

−Ω
ẽ

(
x1 − Ωλ

ẽ
k1(z1 cos Ωτ − z2 sin Ωτ)

)
(ρx2 + z1 sin Ωτ + z2 cos Ωτ) cos Ωτ

]
,

(109)

The system (108) has the same symmetry as identified in the case I. If we are only interested
in solutions with definite parity, we may again start the iteration with �X0 = (0, a2, 0, a4).
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To the second order (ρ2), the determining equations are:

a2
λe

a
− ρ

da2
4k1

2ẽ
+ O(ρ3) = 0 (110)

ρ
γa4

2Ω
− ρ2

(
da2a4

λΩ
+

λΩa2a4k1

2ẽ2

)
+ O(ρ3) = 0 . (111)

From the second equation we obtain either a4 = 0 (trivial for our purposes, as discussed
above) or

γ − ρa2

(
2d

λ
+

λΩ2k1

ẽ2

)
+ O(ρ2) = 0 . (112)

If we backtrack the transformations made, it is clear that the consistency condition requires
that we keep terms up to the fourth order (ρ4). We find that with the substitution

e =
αω + µ

1 + αβ
+ ρ2(ρ2ω3 − ρda2) ,

where ω3 is a new parameter, only the fourth or higher order terms are left in the consistency
condition. From the definition e = R2

0 = (ω − µα)/(β − α) and the above equation, we get
ω ∼ µβ and then e ∼ µ to the zeroth order. So R0 ∼ √

µ, q ∼ 0, which means that this
solution bifurcates from the HOS A =

√
µ exp(−iωt). To the leading order (ρ4), we are

allowed to use the following substitutions in the consistency condition (98):

a2 → 0 ω → µβ Ω →
√
−2µ(1 + αβ)

1 + α2
,

k1 → µλ

a

(
1 +

2λ(1 + αβ)
1 + α2

)
ẽ → −2µλ(1 + αβ)

1 + α2
. (113)

The resulting equation is of a relatively simple form:

a2
4(−λ + d2(1 + αβ)(1 + α2 + λ + λαβ)) + 4(1 + αβ)2λµω3 = 0 . (114)

From (110) it follows that a2 is of order ρ, and from (112) that γ ∼ O(ρ2). After a change
of variable a2 = ρ a22 and keeping only the highest order for the equations, we can rewrite
(110) and (112) as

a22
λe

a
− k1da2

4

2ẽ
= 0 , (115)

γ = 0. (116)

For e, ẽ, k1 we use the values in (113). From (115), (116) and (114), we can solve for
a22, γ, ω3. The Jacobian of those equations is

J =


 λe

a 0 0
0 1 0
0 0 4(1 + αβ)2λµ


 ,

So, det J = 4(1 + αβ)2λ2µe/a �= 0 for 1 + αβ �= 0. According to Theorem C.0.2, we have
proved that equations (77) and (78) possess periodic solutions.
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4.5 Analytic form of periodic solutions, stability analysis
and numerical tests

We have proved in the preceding section the existence of symmetric periodic solutions in
case I and II. In both cases, a small parameter ε or ρ ensures the convergence of successive
approximations. However, we did not give a bound on the allowable value of this parameter,
nor did we show that the solutions which we obtain are the ones observed in numerical
simulations. In this section we give the approximate analytical form of periodic solutions.
We compare them with direct numerical integration of the CGLe in case II.

The solutions are shown to be independent of λ to order ε in case I and to order ε2 in case
II. In addition, these solutions should also satisfy the 3 − d ODE mentioned in section 4.2
which do not contain λ, so they can be matched with the solutions of the 3 − d system
in a unique way, independent of the value of λ. Hence, we conclude that to all orders the
physical solutions are identical for the two values of λ.

The two cases are taken separately. In this section, we reinstate x as the spatial variable,
R = R(x).

4.5.1 Case I

Using (82), (99) and the case I calculations of the preceding section, we have after some
algebra:

R2 = −2εda2(1 ± cos Ωx) (117)

φx = − εa2

2(1 + α2)Ω
sin 2Ωx ± 2 sin Ωx

1 ± cos Ωx
.

To the first order of ε, R and φx are independent of λ. The ± sign selects two solutions
which transform into each other by translating a half period. This is reminiscent of the
spatial translation invariance in the symmetric solution space. From the definitions of e, Ω
and from (100), (95), we get to the first order:

ω = µα − 3εa2

ω2
1 = 4µ +

6εda2

1 + α2
(αβ + 2α2 + 3)

Ω = ω1 +
εγ

2ω1
. (118)

We see that ω and Ω are independent of λ. On the other hand, for periodic boundary
conditions, we can use Fourier modes directly to transform the PDE (70) to a finite set of
approximate ODE’s by Galerkin truncation. Then the stationary solution can be obtained
by solving a set of nonlinear algebraic equations.
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4.5.1.1 Numerical comparison

If we take as an example the following parameter values (previously used in [161]) for which
defect chaos is expected (in the thermodynamic limit):

α = 1.5, β = −1.2

and fix the size of the domain to L = 24, then at µ = 0.072644, ω = 0.097879, a periodic
solution of period L/2 is found. This solution has Rmax � 0.0750. On the other hand, if we
use the same α, β, µ and search for Rmax � 0.075 by adjusting ε (we always keep a2 = 1),
we find that

ε ∼ 0.00380, ω = 0.097566, period
2π

Ω
= 12.0102 .
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Figure 10: Spatial profile of the amplitude R(x) from (117) at µ = 0.07264, with Rmax = 0.075.

The approximate analytic solution and the numerical solution of the exact CGLe agree
very well. The profile of R from our successive approximation is shown in Fig. 10.

4.5.1.2 Analytic structure near the defect

It is easy to see from (117) that only εa2 > 0 is the physically interesting combination.
However, we may wonder whether it is really true that R2 = dP + e remains non-negative
everywhere while touching zero at isolated points. Fig. 10 and the first equation of (117)
suggest a positive answer to this question. But since we have only an approximate solution,
further justification is needed. Suppose at some instant x0, we have dP + e = 0 on the
periodic orbit. From the consistency condition (98), at this transition point

d2(1 + α2)
4

Q2 +
(a

λ
Ñ − λQ

)2
= 0,

so, Q = Ñ = 0. According to (94), ˙̃M = 0 and Ṗ = 0. Assume that Q̇ = 0, then ˙̃N �= 0
since the transition point is not an equilibrium. At next instant x0 + δx, the consistency
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condition can not be satisfied as the two sides of (98) have different orders of δx. So we
conclude that Q̇ �= 0 at the point x0, which means that Q(x0 + δx) has negative sign to
that of Q(x0 − δx). Thus, after touching the zero value hyper-plane, dP + e returns to the
positive half space again. The turning happens exactly on the dP + e = 0 plane. We claim
that dP +e ≥ 0 always holds and the equality holds periodically for the periodic orbit under
consideration. From (117), in the neighborhood of R = 0 at x = x0 on the periodic orbit,
R behaves like

R ∼
(

dQ̇

2

)1/2

|x − x0| ,

and is manifestly a non-analytic function of x.

We do not discuss the stability of the solutions in case I, as this has already been
accomplished by Takáč [244] who has proven that these solutions are unstable.

4.5.2 Case II

To the first order of ε, the solutions are


x1 = − εk1a2
4

8ẽ2Ω
(2dẽ + λk3) sin 2Ωx

x2 = ε(a2
2 − λk1a2

4
4ẽ2 cos 2Ωx)

z1 = − εa2
4

12ẽ2λΩ2 (3(3dẽ2 + λ2Ω2k1) sin Ωx + (dẽ2 − λ2Ω2k1) sin 3Ωx)
z2 = a4 + εa2

4
12ẽ2λΩ2 (3(λ2Ω2k1 − dẽ2) cos Ωx + (λ2Ω2k1 − dẽ2) cos 3Ωx) ,

where ε = ρ2 > 0, and a4 is a free parameter. In the following, we will see that ε and a4

always emerge in the combination ε a4 for physical quantities. To the second order, ω is

ω = µβ +
ε2a2

4

4µ(1 + α2)

(
1 + α β

β − α
+

β − α

1 + α β

)
.

It is independent of λ, and therefore e, b, Ω are also independent of λ. R and φx can also
be calculated to the second order:

R2 = − d2

2µ
(εa4)2 + dεa4 cos Ωx +

d(εa4)2

12Ω2

( c

a
+

e

b

)
cos 2Ωx + e (119)

φx =
εa4

µΩ(1 + α2)

[
e sin Ωx − εa4

24Ω2

(
6dΩ2 +

7e2

aΩ2
+

7ce

a

)
sin 2Ωx

]

So clearly R and φx are independent of λ. Similarly, the different signs of a4 will give
the same solution up to a half-period translation. This solution is the one observed in the
numerics when passing the Eckhaus instability for underlying wavevector q = 0. Linear
stability analysis reveals [171] that the q = 0 state, the most stable state under the long
wavelength perturbations, becomes unstable when the size of the system is such that the
smallest possible nonzero wavenumber k satisfies

k2 < −2µ(1 + αβ)
1 + α2

≡ κ2 .
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It is easy to see that κ2 = ω2
1 up to order (ρ4).

For our parameter choices µ = 1, α = 1.5, β = −1.2, the bifurcation size of the system
is L0 = 2π

κ = 8.95492. In the following, we will first prove the stability of our solutions
near the bifurcation point. Then we will compare them with the stable solutions observed
in numerics.

4.5.2.1 Stability analysis

Assume that A = R exp(iφ) where R, φ ∈ R is an exact solution of (70). The perturbed
solution is assumed to be Ā = (R + r) exp i(φ + θ), where r, θ ∈ R is the perturbation on
the amplitude and phase, separately. Substitute it into (70), keeping only the linear terms
in r and θ. We have

rt = (µ − φ2
x − αφxx − 3R2)r + rxx − 2αφxrx

−(2Rφx + 2αRx)θx − αRθxx (120)
Rθt = (ω − αφ2

x + φxx − 3βR2)r + αrxx + 2φxrx

+(2Rx − 2αRφx)θx + Rθxx , (121)

where in (121) we have used φt = −ω. To study the stability of the starting solution A,
we treat these equations as an eigenvalue problem for a two-component vector, i.e., we let
rt = σr, θt = σθ and investigate the spectra σ of the linear operator resulting from (120)
and (121) in the C1 continuous periodic function space. As the CGLe has global phase
invariance, the eigenvalue equations always have solution (r, θ) = (0, θ0) with eigenvalue
σ = 0. At the same time, spatial translational invariance implies that another eigenmode
has σ = 0. As a result, saying that the solution is stable means that it is stable up to a phase
and a spatial translation, and that all other eigenmodes have eigenvalues with negative real
parts.

Invoking the expression for R, φx to the second order of ε, the coefficients of various
terms of r, θ and their derivatives in (120) and (121) become explicit functions of x. The
resulting linear operator on (r, θ) has even parity due to the symmetry of our solution, and
we can consider the even and odd modes of r, θ separately. If we set ε = 0, i.e., the starting
state A is a plane wave state, then cos(nΩx) and sin(nΩx) are the eigenfunctions of the
unperturbed linear operator. They give the stability spectrum of the plane waves. Now, let
us move a little (to the order of ε) beyond the bifurcation point. The eigenfunctions are still
cos(nΩx) and sin(nΩx) up to ε corrections. For example, if the even solutions are considered
first, we assume that to the first order the eigenfunctions are (the time dependence for r, θ
has been suppressed):

r = m1 cos(nΩx) + ε(m0 cos((n − 1)Ωx) + m2 cos((n + 1)Ωx)) (122)
θ = n1 cos(nΩx) + ε(n0 cos((n − 1)Ωx)) + n2 cos((n + 1)Ωx)) , (123)

where n is a non-negative integer. Note that we do not include the terms such as ε2 cos((n±
2)Ωx) in the above expressions because they induce corrections of order ε3 or higher in the
eigenvalues. Now if we substitute (122) and (123) into the eigenvalue equations and identify
the coefficients of cos(nΩx), cos((n − 1)Ωx) and cos((n + 1)Ωx), a set of six homogeneous
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linear equations for m0, m1, m2, n0, n1, n2 can be derived. The determinant of the coefficient
matrix will give an eigenvalue equation for σ. The resulting expression is too complicated
to merit being displayed here.

Before bifurcation, the HOS is stable. The first instability occurs for n = 1 mode, one
eigenvalue of which is very close to 0 near the bifurcation point, being negative before and
positive after. Meanwhile, for n > 1 modes, the corresponding eigenvalues have negative
real parts bounded away from zero. As the bifurcating solution emerges continuously from
the HOS, near the bifurcation point (ε � 1) the perturbed linear operator has all the
eigenvalues with negative real parts away from 0 for n > 1 and one eigenvalue close to 0 for
n = 1. So, we only need to check the stability of our solutions for n = 1.

For convenience, we can fix parameters α and β to any values allowed by (97) and
perform the above stability analysis of the solution.

The numerical values we used are µ = 1.0, α = 1.5, β = −1.2, a4 = 1. The eigenvalue
equation is then

7.9860ε2σ + (56.423 − 63.394ε2)σ2 + (82.564 − 75.135ε2)σ3

+(45.022 − 28.859ε2)σ4 + (10.923 − 4.3059ε2)σ5

+(1.0 − 0.18864ε2)σ6 = 0 .

σ = 0 corresponds to the neutral mode associated with the global phase invariance. All
others solutions have negative real parts. The σ− = −0.14154ε2 solution is the interesting
one. If we use the same parameter values to calculate the stability of the HOS, the eigenvalue
equation for n = 1 is

ε2(−0.21122 − 0.26402σ) + 2.98462σ + σ2 = 0 .

To the second order in ε, we have σ = −2.98462 − 0.19325ε2 or σ+ = 0.07077ε2. The
later positive eigenvalue indicates that the plane wave solution is not stable. We note that
2σ+ = −σ− to order ε2 which indicates a supercritical pitchfork bifurcation. We have
proved that this equality holds exactly at the bifurcation point for any values of α and
β, and this justifies the above numerical checks. Under perturbation the HOS will evolve
to the modulated amplitude solution given above. When the instability is saturated, the
corresponding eigenvalue for the MAW is negative. If we change the sign of a4 or use the
other value of λ, the eigenvalue does not change, as expected.

If we alternatively consider the odd-parity function space {sin(nΩx)}n∈N, we obtain the
following eigenvalue equation:

(28.2115 − 33.6568ε2)σ + (27.1763 − 21.2703ε2)σ2 + (8.92308 −
4.04125ε2)σ3 + (1 − 0.19287ε2)σ4 = 0 .

This equation is quartic because for n = 1 only two modes sin Ωx and sin 2Ωx are used.
Now σ = 0 corresponds to the neutral mode associated with the spatial translation of the
CGLe. Other eigenvalues of the equation have negative real parts bounded away from 0.

To summarize, our solution is stable in the whole phase space of the CGLe, up to a
phase and a spatial translation.
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In ref [135], B. Janiaud et al. have investigated the stability of traveling waves near the
Eckhaus instability in Benjamin-Feir stable regime. They derived a necessary condition for
the bifurcation to be supercritical and located the corresponding regions as two strips in the
α, β parameter space. We have studied the stationary MAWs in the Benjamin-Feir unstable
regime and found that the bifurcation from the HOS to MAWs is always supercritical, even
when parameter values lay outside of the region given in ref [135].

In ref [190], application of the perturbation method to the zeroth order (ε0) equation gave
nonzero eigenvalue λ0 = 2/β. This can not be correct since the zeroth order equation just
gives the stability of the unstable HOS. Furthermore, in the Galerkin projection calculation
in [190], somewhat surprisingly the N = 1 truncation was found to give a better result
than the N = 2 truncation. In our case, if we used only the first order expressions for R, φx

in (120) and (121), we could not get the correct eigenvalues even near the bifurcation point,
and thus are absolutely forbidden to extend the result to the next bifurcation.

4.5.2.2 Comparaison with numerical integration of the CGLe

In our numerical simulations we employed a pseudo-spectral method to evolve equation
(70) using 128 modes. For system size L < L0, we always recover the HOS (q = 0). For L
slightly larger than L0, however, the solution relaxes to the modulated amplitude solution
(119) for any smooth initial condition we have tried. Figure 11 compares the stable steady
solutions obtained by the two methods.

2 4 6 8
x

0.99

0.995

1.005

R

Figure 11: Spatial profiles of the amplitude R for µ = 1, α = 1.5, β = −1.2, L = 8.958 from numerical
simulation (dots) and the approximate solution (119) (solid line). The agreement is good, with the
discrepancy mainly due to the long relaxation time close to the bifurcation point.

4.6 Summary

After reviewing the basic properties of the 1-d CGle, we reformulated the equation for its
stationary solutions as a fourth-order ODE for a variable P that can be interpreted as the

Y. Lan - PhD thesis - version 0.8 - May 18, 2004 CGL - 17apr2004, printed May 24, 2004



CHAPTER 4. COMPLEX GINZBURG-LANDAU EQUATION 72

modulation of the amplitude squared of a plane wave solution. This reformulation enabled
us to prove the existence of stationary MAW solutions in the two limit cases corresponding
to the bifurcation of the trivial solution A = 0 (case I), and to the bifurcation of the plane
wave solution of zero wavenumber (case II).

We proved the stability of MAW solutions for the full CGLe in a finite box with peri-
odic boundary conditions in case II near the onset of plane wave instability. We tested our
analytical results by comparison of numerical integrations of the full CGLe with our ap-
proximate analytical solutions.The MAWs continue to exist when the size L is increased. In
case I, unstable periodic hole solutions were shown to exist. This could not be inferred from
any phase equation: around the defect point A = 0, the amplitude behaves non-analytically,
namely piecewise affinely, and the phase is not defined.

The analysis of MAWs bifurcating from a plane wave with wavenumber 0 < q < 1
should be similar to the study of case II. It would be interesting to study the higher order
instabilities of MAWs when the system size is increased beyond the region in which our
analysis takes place. It has been observed that stationary symmetrical MAWs bifurcate into
uniformly-propagating asymmetrical ones via a drift-pitchfork bifurcation. This happens
when L is increased as a consequence of the growth of the amplitude of the modulation, and
the increase of the spectral richness of the MAW solution. Moreover, MAWs are expected
to be the building blocks of phase turbulence, and the analytical analysis of their global
stability may lead to a characterization of the suspected transition between phase and defect
chaos in the CGLe [?, ?].
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CHAPTER V

1 − D KURAMOTO-SIVASHINSKY EQUATION AND ITS
STEADY SOLUTIONS

The 1 − d Kuramoto-Sivashinsky equation (KSe) is one of the simplest nonlinear PDEs
that exhibit spatiotemporal chaos. As we will show, its asymptotic dynamics is equivalent
to a finite set of ODEs, even in the chaotic regime. The study also helps us understand
the phase dynamics of the CGLe discussed in chapter 4. In this chapter we discuss basic
properties and the steady solutions of the KS equation. After deriving the KSe as a phase
description of the CGLe in sect. 5.1, we present some of its properties under the periodic
boundary condition in sect. 5.2. In sect. 5.3, we concentrate on the steady solutions of the
KSe. In addition to reviewing others’ work, we numerically determined the steady solutions
most relevant to the phase space dynamics. They will be used in the calculation of periodic
orbits in the next chapter.

5.1 Derivation

The KS equation is a generic equation that describes the evolution of the phase of coupled
oscillating systems near the onset of spatial instability. Here we take the CGLe (70) as an
example and derive the KSe near the onset of first spatial instability. Consider perturbations
on the homogeneous oscillating state, i.e., let A(x, t) take the form

A(x, t) = (1 + ρ(x, t))ei(−βt+φ(x,t)) . (124)

Substituting (124) into the CGLe (with µ = 1), we get the exact evolution equation for
ρ(x, t) and φ(x, t),

ρt = −2ρ − 3ρ2 − ρ3 + ρx − α(1 + ρ)φxx − 2αρxφx − (1 + ρ)(φx)2 , (125)
(1 + ρ)φt = −2βρ − 3βρ2 − βρ3 + αρxx + (1 + ρ)φxx

+2ρxφx − α(1 + ρ)(φx)2 . (126)

For small perturbations, we only need to retain linear terms in (125) , (126), and thus are
able to use the Fourier modes to study the stability. Let

ρ(x, t) = ρ0e
i(ωt−kx)

φ(x, t) = φ0e
i(ωt−kx) ,

and by substituting them into the linear equations for ρ and φ, we get the relation

(iω + 2 + k2)ρ0 − αk2φ0 = 0
(2β + αk2)ρ0 + (iω + k2)φ0 = 0 , (127)

73
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which implies
iω = −(1 + k2) ±

√
1 − 2αβk2 − α2k4 .

One solution always has negative real part which is stable and the other solution may change
the sign of the real part under system parameter changes. The latter one induces spatial
instability and its dispersion relation for small k becomes

iω = −(1 + αβ)k2 − 1
2
α2(1 + β2)k4 + O(k6) , (128)

which implies that the long wavelength modes become unstable first and evolve very slowly
(at a time scale 1/t ∼ (1 + αβ)k2). To the lowest order, the phase thus satisfies a diffusion
equation

∂tφ = ν∇2φ , (129)

with D = 1 + αβ. If D > 0 (the so-called Benjamin-Feir-Newell criterion), the phase will
tend to be spatially uniform and the asymptotic state is the homogeneously oscillating state.
If D < 0, (129) leads to unphysical blow-ups so higher order and nonlinear terms should be
included to saturate the instability. Comparing the relative size of each term in (125) and
(126) at the onset of instability, we find that in (125), −2ρ on the right hand side implies a
fast decay of ρ and thus ρ is small and slaved to the gradient of φ. From (127), we see that

ρ0

φ0
≈ |α|

2
k2 , (130)

which shows ρ0 → 0 as k → 0, as argued above. In view of (130) and (128), near the onset
of spatial instability, the scalings are like

x ∼ ε , t ∼ ε2 , φ ∼ 1 , ρ ∼ ε2 .

Inserting into (127) and equating the terms of order ε2, we get

0 = −2ρ − αφxx − (φx)2

φt = −2βρ + φxx − α(φx)2 ,

or
φt = Dφxx + λ(φx)2 , (131)

where λ = β − α. Crossing the BFN instability, (131) becomes unstable and we have to
retain higher order terms to stabilize it. The simplest choice is to include the fourth order
term in (128) and we find that

φt = Dφxx + λ(φx)2 − µφxxxx , (132)

where µ = 1
2β2(1 + α2). To be consistent with the scaling relation, the fourth and the

second order terms must have comparable size, which means D ∼ k2 and thus implies that
(132) holds near the onset of instability and in the limit of large system size. In practice,
(132) and its variants hold under less restrictive conditions and are able to describe the time
evolution of a spatially extended system in quite large parameter range. In the following
we are interested in the case where D < 0.
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5.2 Basic Properties

The KS equation was initially derived as a phase equation by Kuramoto and Tsuzuki for
a system of reaction-diffusion equations [153]. Sivashinsky derived it independently in the
context of small perturbations of unstable flame fronts [228]. The equation also describes
falling films on an inclined surface [229, 17], interfacial instability between two concurrent
viscous fluids [127] and unstable drift waves in plasmas [38, 207]. By rescaling t, x and u in
(132), we obtain

ut = (u2)x − uxx − νuxxxx , (133)

where ν is a viscosity-like parameter which controls the rate of dissipation in the system. The
first term on the right of (133) is the nonlinear convection term which induces interaction
between different Fourier modes. In average, it transfers energy from the low wavenumber
modes to higher ones. The second term is an anti-diffusion term which pumps energy to the
system and makes it unstable. The last term dissipates energy and stabilizes the system.

5.2.1 Symmetry and Fourier modes

Eq (133) is space and time translationally invariant. It also preserves antisymmetric solu-
tions, i.e., if u(x, 0) = −u(−x, 0), then u(x, t) = −u(−x, t) for any t > 0. It is Galilean
invariant, i.e., if u(x, t) is a solution, then c + u(x + 2ct, t) with c an arbitrary constant, is
also a solution.

We will study (133) in a periodic interval of size L. L will be used as the control
parameter with ν fixed. In the literature the renormalized length L̃ = L

2π
√

ν
is also used as

the bifurcation parameter. In view of the periodic boundary condition u(x, t) = u(x+L, t),
we expand u(x, t) in Fourier modes,

u(x, t) =
∑

k

ak(t)eikqx , (134)

where ak ∈ C and q = 2π/L is the basic wavenumber. The reality of u implies that a∗k = a−k.
Eq (133) then takes the form

ȧk = [(kq)2 − ν(kq)4]ak + ikq
∞∑

m=−∞
ak−mam , (135)

where ȧk denotes the time derivative of ak. Note that ȧ0 = 0, so a0 is a conserved quantity.
By Galilean invariance, we may set a0 = 0 without loss of generality.

From (135), we see that the origin u(x, t) ≡ 0 has Fourier modes as the stability eigen-
vector and at most a finite of them are unstable. See in figure 12 how the linear eigenvalue
depends on the wavenumber. Considering that this dependence is an even function of the
wavenumber, we only show the positive part. It is easy to see that when |kq| ∈ (0, 1/

√
ν),

the corresponding Fourier modes are unstable. The most unstable modes has |kq| = 1/
√

2ν
and defines the scale of basic building blocks of the spatiotemporal dynamics of the KSe
in large system size limit as shown later. In a periodic box, as the set of wavenumbers is
discrete, finite gaps exist between different eigenvalues and the gap increases quickly with
the increase of wavenumbers. Based on this special spectral structure, various properties of
the KSe are derived [245].
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Figure 12: The stability eigenvalue of u(x, t) ≡ 0 versus the wavenumber kq.

5.2.2 Origin is the global attractor for small L

For L small enough, as shown above, all the Fourier modes become linearly stable so the
origin is a local attractor. In fact, for L < 2π

√
ν, we show that u(x, t) = 0 is also a global

attractor. We denote the integral of a function A over [0, L] by 〈A〉, i.e.,

〈A〉 =
∫ L

0
A(x, t) dx .

Multiplying both sides of (133) by u(x, t) and then integrate, we have

1
2
〈u2〉t =

2
3
〈(u3)x〉 − 〈uuxx〉 − ν〈uuxxxx〉 = 〈u2

x〉 − ν〈u2
xx〉 , (136)

since 〈(u3)x〉 = 0 due to the periodic boundary condition. For the same reason the partially
integrated parts equal to zero. 〈u〉t means taking derivative with respect to time. Substitute
(134) into the right hand side of (136), we get

1
2
〈u2〉t =

∞∑
k=−∞

|ak|2(kq)2(1 − ν(kq)2) . (137)

It is easy to see that when L < 2π
√

ν, each term on the right hand side of (137) is less than
or equal to 0. So in this case, we conclude that

〈u2〉t ≤ 0

′ =′ holds only for u ≡ 0. When u �≡ 0, 〈u2〉t < 0, so 〈u2〉 keeps decreasing, the solution to
(133) approaching u(x, t) = 0. So we have proved that the origin is a global attractor when
L < 2π

√
ν.

5.2.3 Inertial manifold

When L is large (or infinite), near the laminar solution u(x, t) = 0, a band of Fourier modes
with wave numbers |kq| < 1/

√
ν are unstable with the observed patterns dominated by

the most unstable mode, with |kq| = 1/
√

2ν. Away from u = 0, the instability of these
lower modes is balanced by the collective action of all the modes through the nonlinear
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convection term (u2)x, not like in the CGLe case where the stability is saturated by the
nonlinear “diagonal terms” of the form anΣka

∗
kak [40].

It has been shown that the solution u(x, t) is analytic in x at any time t > 0 if u(x, 0)
is analytic, and thus the amplitudes of the high k modes decay at least exponentially [39].
In fact, an absorbing ball B exists such that all trajectories will be contained in it after a
finite time interval depending on the initial conditions. The ω-limit set of B is thus the
global attractor in the infinite-dimensional phase space of the KSe. The strong damping of
the higher modes exerted by the super-viscosity term uxxxx produces a finite-dimensional
invariant manifold Σ which is compact and attracting. With these properties, it has been
named inertial manifold [85, 86, 245]. All solutions converge exponentially to Σ and there-
fore Σ contains the global attractor. Σ acts like a global center manifold and a finite number
of Fourier modes are enough to pin it down. The rest higher modes are contained in the ge-
ometrical constraints that define Σ [192]. Various numerical procedures have been proposed
to approximate inertial manifolds [84].

Though the fractal dimension of the global attractor and the inertial manifold can be
rigorously estimated d(X) ≤ 1 + const ν9/40L̃3/2 (see ref. [132] and references therein), it
is generally believed that in an extended system the fractal dimension grows linearly with
the system size [214, 239, 74]. In practice, people tend to use much fewer modes to do
the simulation than given by the above estimate. When restricted to the inertial manifold,
the flow of the KSe is equivalent to that of a finite set of ODEs. In this sense, the KSe is
accessible by the “low-dimensional” dynamical system analysis. In practice, we get the set
of ODEs that define the dynamics on the inertial manifold by substitute the approximate
constraint equations into the equations of motion of lower Fourier modes [246].

5.3 Steady solutions of the KSe

Though the KS equation is a nonlinear PDE and exhibits spatiotemporally chaotic behavior
when the system size is big enough, it shows characteristics of low-dimensional dynamics,
which is analytically justified by the study of inertial manifolds. From the trivial state u ≡ 0
towards the onset of the chaotic behavior, the system experiences a series of bifurcations in
which steady solutions play an important role and set up the scale of the building blocks of
spatiotemporal chaos. In certain parameter range, the steady solutions are directly related
to the observed dynamics. For example, the n-cell state [91] is stable at discrete windows for
arbitrary large system size. Another example is the localized near-solitory waves observed
in experiments and numerical simulation [33]. These highly-separated waves are not stable
and their evolution is governed by the weak interaction originating from the exponential
tails of their profiles.

Equilibria are the simplest invariant sets in the phase space, their distribution and the
connections between them form the coarsest geometrical frame for organizing phase space
orbits [103]. The steady solutions of the KSe satisfies

(u2)x − uxx − νuxxxx = 0 .
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We can integrate once to get
u2 − ux − νuxxx = c , (138)

where c is an integration constant. Its value determines the property of solutions of (138).
In the following calculation, without loss of generality we may set ν = 1.

Written in the form of a 3 − d dynamical system, (138) becomes

ux = y

yx = w

wx = u2 − y − c . (139)

It is clear that the flow defined by (139) is volume preserving. Notice that the system has
the time reversal symmetry,

x → −x, u → −u, y → y, w → −w .

From (139), we see that
(u + w)x = u2 − c .

Therefore, if c < 0, u+w increases without bounded with x → ∞. Every solution escapes to
infinity and (139) has no bounded solutions. If c = 0, the origin (0, 0, 0) is the only bounded
solution. Other solutions go to infinity when x → ∞ and/or x → −∞. If c > 0, interesting
dynamics may happen and depending on the value of c, the set of bounded solutions can
be extremely complicated. In the following, we only discuss this case. Again, the dynamics
of (139) is organized at the coarsest level by its own equilibria and possible connections
between them.

When c > 0, system (139) has two stationary points c+ = (
√

c, 0, 0) and c− = (−√
c, 0, 0).

Linearizing the flow around c+, we obtain the stability eigenvalues 2λ1 ,−λ1 ± iλ2 with

λ1 =
1√
3

sinhφ, λ2 = cosh φ ,

where sinh 3φ = 3
√

3c. So, c+ has a 1 − d unstable manifold and a 2 − d stable manifold
along which solutions spiral in. Because of the time reversal symmetry, c− has similar
manifolds with reversed stability properties. The escaping orbits still dominate and it can
be shown that the escaping orbits take up a large subset in the phase space [23]. This
creates great trouble for numerical calculation as most of the orbit will escape even near a
compact invariant set. Bisection technique is used by the early authors [128] and evolves
into straddle-saddle scheme later on [195, 185]. All these methods involve the time and effort
consuming evolving-refining procedures. To efficiently locate important compact solutions,
the variational technique developed in [156] shows its strength as we will show later.

5.3.1 Heteroclinic and homoclinic Connections

It is well known that equation (138) has an exact heteroclinic solution

u = a1 tanh(kx) + a2 tanh3(kx) , (140)
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for the specific value c = −30k2

19 (304k4 − 40k2 + 1) where

a1 = 60k3 − 30k

19
, a2 = −60k3 , k2 =

11
76

or k2 = − 1
76

.

When k2 = −1/76, the hyperbolic tangent becomes ordinary tangent and there are poles
on the real axis. Near the singulariy, u goes like like

u(x) ≈ −60
(x − x0)3

, x → x0 .

All the blow-up solutions possess singularities of the same type [23]. In general, the existence
and structure of connections depend on parameter c in a very complicated way.

According to the stability analysis of the stationary points of (139), naive counting
scheme [259] tells that: there are structurally stable spiraling heteroclinic connections be-
tween c+ and c− for any c > 0. Connections may exist connecting the 1 − d and the 2 − d
manifolds for discrete values of c. Due to time reversal symmetry, the two 1 − d manifolds
are sometimes able to connect to each other to form asymptotically monotonic connection.
The exact solution (140) is an example.

When c is large, system behavior is quite simple. Let’s do the following rescaling of
coordinates

u → √
cu , x → x

c1/6
.

(138) then becomes
u2 − c−1/3u − uxxx = 1 .

In the limit c → ∞, we get
uxxx = u2 − 1 .

McCord studied this system and proved that the antisymmetric heteroclinic orbit connect-
ing the two equiliria is the only bounded nonconstant solution [172]. For c large enough,
Michelson argued that the heteroclinic orbit remains the unique bounded curve [174]. This
orbit has been numerically observed down to c = 0.07 [128] and can be found in normal
form analysis for c � 1 [32].

When c decreases from large values, new connections with more zeroes are born through
saddle-node bifurcations. They all lie on the 2-d manifolds of c± and so possess structural
stablility. There exists a lower bound cmax ≈ 1.1252 such that these orbits limit to an odd
periodic orbit by having infinitely many zeroes at c = cmax. When c < cmax, the set of
connections has intricate geometrical structure. Lau [159] has studied the formation and
bifurcation of the intersectons of 2-d manifolds of c± and found that they form a cocoon-like
tangle in the phase space. He named the whole process the “cocoon” bifurcation.

In [128], if a heteroclinic orbit involves spiraling, it is called an oscillatory shock, other-
wise, a regular shock. Homoclinic connections are called solitory waves. More specificly, in
the far field, the oscillatory shock behaves like

u → ±√
c + b±e∓λ1x cos(λ2x + φ±) , x → ±∞ , (141)
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the regular shock behaves like

u → ∓√
c + a±e∓2λ1x , x → ±∞ , (142)

and the solitary wave near c+ behaves like

u → √
c + ae2λ1x , x → −∞

u → √
c + be−λ1x cos(λ2x + φ) , x → +∞ , (143)

where a, a±, b, b± are arbitrary constants and φ, φ± are adjustable parameters to match
asymptotics when x → ±∞. The three categories are investigated numerically at different
c values in [128] and families of solutions are found. These connecting orbits can be classified
according to their topology relative to the two equilibria [143].

The asymptotic approach can sometimes be rather tricky. For example, when c → 0+,
although an asymptotic expansion appears to establish the existence of regular shocks, there
are actually none. Only the “asymptotics beyond all orders” reveals the truth [105]. Yang
carried out the asymptotic analysis further on the existence and properties of the connec-
tions [275]. He showed that in the weak-shock limit, i.e., 0 < c � 1, the oscillatory shocks
can only be antisymmetric, otherwise oscillatory and monotonic waves of exponentially
small but growing amplitude will be excited. He also showed that under certain conditions,
the solitary wave forms when the stable and unstable manifold of an equilibrium connects.

Numerically, the asymptotic solutions are taken as the initial condition and shooting
scheme is invoked to determine the connections. The integration constant c and the az-
imuthal angle φ can be used as variable matching parameters. There are two ways of
shooting. The first is to shoot from one point and check whether it reaches the other point;
the other is to shoot from both points and match them at some intermediate point. I prefer
the second method as matching away from the equilibria is easier and more accurate.

5.3.2 Periodic Solutions of the steady equation

Having in mind above discussion about the intricate set of connections, we expect that
the set of periodic solutions could be extremely complicated. Yet a bifurcation analysis in
Fourier space simplifies the classification a lot if we are only concerned with the periodic
solutions [103]. For a fixed system size L, the periodic solutions satisfy the equation

[(kq)2 − (kq)4]ak + ikq
∞∑

m=−∞
ak−mam = 0 . (144)

We have proved in sect. 5.2.2 that when the system size is smaller than 2π, the laminar state
u ≡ 0 is the global attractor. So there is no nontrivial periodic solution with period smaller
than 2π. Next we check the linear stability of the laminar state. When the nonlinear term
(u2)x is removed in (133), the remaining linear equation has Fourier modes as eigenvectors
with eigenvalues

ωk = (kq)2 − (kq)4 .
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If we take the system size L as the bifurcation parameter, every time L crosses 2nπ , n ∈ N,
there is a pitchfork bifurcation where n-cell states are generated. They form an invari-
ant circle due to the translational invariance of (133). In the antisymmetric space, they
corresponds to two points, being half-period translates of each other, and of the form

u(x, t) = −2
∑

k

bkn sin(knx) ,

where bkn ∈ R. By rescaling u, x and ν, the n-cell states transform to each other.

The bifurcation of the n-cell states is well described in [103]. The stability matrices
associated with these states decompose into non-interacting blocks due to the symmetries
present. Each block corresponds to a subharmonic perturbation and contains two separate
subsectors corresponding to cosine and sine components in the tangent space. At each
bifurcation, two anti-symmetric solutions (being translates of each other) are generated
with additional asymmetric solutions. For small long-wavelength perturbations, the anti-
symmetric solution can be viewed as a modulated n-cell state.

With the increase of L these steady periodic solutions may bifurcate into more compli-
cated ones. For any fixed period L, however, the number of steady periodic solutions are
finite up to spatial translation. This fact can be explained as follows. The existence of the
inertial manifold [245] bounds the size of all Fourier components and the stationary points
should live on the compact inertial manifold. This manifold and the dynamics on it can be
described by smooth functions of a finite number of Fourier modes. On a finite-dimensional
compact manifold, a smooth function can only have a finite number of zeros. So, the steady
states, as the zeros of the smooth velocity field on the inertial manifold, are finitely many.

When L is small, the number of steady solutions are small and their energy concentrates
on the low wavenumber end of the Fourier spectrum. These solutions may be obtained by
solving the truncated version of (144). When L increases, the number of steady solutions
increases exponentially. Like the laminar solution, a steady solution bifurcates every time
when L expands a certain amount close to some average value. In the limit of infinite system
size L → ∞, there are infinitely many steady solutions. To understand the structure of these
solutions, we have to study the phase space of the 3 − d dynamical system (139).

The mass generation of periodic orbits are closely related to the connecting orbits in
the phase space. Kent and Elgin conjectured that all the bounded orbits originate from
the unique heteroclinic orbits at c � 1 through a series of bifurcations [143]. The existence
of the periodic and connecting orbits may be rigorously established by computer-assisted
topological arguments [251]. At the qualitative level, the existence of the complicated set
of periodic orbits is deducible from the Shil’nikov construction of horseshoes for homoclinic
orbits or heteroclinic cycles [106]. There are infinitely many horseshoes associated with
this construction and each horseshoe will generate infinitely many periodic orbits. So, the
orbit structure of the phase space becomes extemely complicated when this construction is
possible. But there is no problem for the periodic orbit theory as periods of these orbits
increase very fast and the required low-period orbits can be found numerically without much
difficulty.
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5.3.3 Phase space structure at small c

In the limit c → 0+, perturbation technique can be employed to analyze properties of (139).
For simplicity, let c = ε2 , ε > 0. Make a change of variables

(u, y, w) → ε(u, y, w) .

(139) becomes

ux = y

yx = w

wx = −y + ε(u2 − 1) . (145)

To the zeroth order, (145) is linear, the general solutions is

u = ỹ sin(x) − w̃ cos(x) + ũ

y = ỹ cos(x) + w̃ sin(x)
w = −ỹ sin(x) + w̃ cos(x) , (146)

where ũ, ỹ, w̃ are constants and will be used as dependent variables in the perturbation
analysis. Substitute (146) into (145), and we get equations for ũ, ỹ, w̃,

ũx = ε(u2 − 1)
ỹx = −ε sin(x)(u2 − 1)
w̃x = ε cos(x)(u2 − 1) (147)

Multi-scale averaging method may be used to analyze (147). For example, do the following
change of variables,

ỹ = ȳ + εy1(ū, ȳ, w̄, x) + ε2y2(ū, ȳ, w̄, x) + · · · ,

with similar expressions applied to the other two variables, ũ and w̃. To the third order of
ε, we get (for notation simplicity we replace ū, ȳ, w̄ by u, y, w)

ux = ε[
1
2
(y2 + w2) + u2 − 1] + ε3[4u4 +

7
4
(y2 + w2) − 271

288
(y2 + w2)2

+
1
8
u2(−32 + 9(y2 + w2))]

yx = −εuy +
ε2

24
(36u2w − w3 − wy2) +

ε3

36
[153u3y − 9uy − 41uy(y2 + w2)]

wx = −εuw − ε2

24
(36u2y − y3 − yw2) +

ε3

36
[153u3w − 9uw − 41uw(y2 + w2)] .

Let ρ = y2 + w2, we get a 2-d dynamical system

ux = ε(
1
2
ρ + u2 − 1) + ε3(4u4 +

7
4
ρ − 271

288
ρ2 +

1
8
u2(−32 + 9ρ))

ρx = ε2uρ +
ε3

18
(153u3ρ − 9uρ − 41uρ2) . (148)

This is a 2-d autonomous system with (x−)time reversal symmetry, i.e., the system is
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up2p1
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Figure 13: Phase diagram of (148) to the lowest order.

invariant under
u → −u , ρ → ρ , x → −x .

H.-T. Chang obtained a similar expression to the lowest order of ε using the normal form
analysis [32]. To O(ε2), the phase diagram of system (148) is shown in figure 13. There are
three stationary points p1 , p2 , p3 where p1 and p2 correspond to the two stationary points
of (139) and p3 to the odd periodic orbit generated when c crosses zero. As shown in [139],
this orbit always exists for small c > 0 and has the form

u = −
√

2ε sin(Ωx) +
ε2

3
sin(2Ωx) + · · · ,

where Ω = 1−ε2/6+ · · · . The existence of this orbit and the structurally stable heteroclinic
connection implies an extremely complicated phase space structure as consequence of the
Conley index theory [42] and Shil’nikov construction [106]. In figure 13, we have two
heteroclinic connections between p1 and p2. The one on the ρ = 0 axis corresponds to the
regular shock mentioned before and the other one to a 2-d connection manifold of (139).
Between these connections, the area is filled with periodic orbits, corresponding to invariant
tori of (139), whose periods increase indefinitely upon approaching the connections.

The dynamics described above is not structurally stable. It depicts, however, a qualita-
tive picture valid to all orders of ε, which seems to say that through change of coordinates,
the system (139) becomes an integrable system. This cannot be correct as complicated
dynamical behavior is observed in (139) even for small values of c. The contradiction is due
to the nonconvergence of the series of coordinate changes

ỹ → ȳ + εy1 + ε2y2 + · · · .

For this reason, many features of the dynamics observed in figure 13 are not present in (139).
For example, there are no continuous families of invariant tori or 2-d heteroclinic connec-
tion, and the connection on ρ = 0 does not exist for small c > 0, as noted above. In fact the
separation of the 1−d manifolds can be estimated using the analysis beyond all orders [105].
Similar situations are frequently encountered in Hamiltonian mechanics [125, 150]. On the
other hand, many features of (148) are kept in (139). For example, some of the invariant tori
would survive the higher order perturbations [186] and one structurally stable heteroclinic
connection persists as a remnant of the 2 − d connection manifold. During the process,
infinitely many periodic orbits will be generated.
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Figure 14: (a) a1, a2 projection of a typical phase orbit of (135); (b) a3, a4 projection of the same
orbit; L = 38.5 , ν = 1 , 16 Fourier modes truncation.

(a)
−2 −1 0 1 2

−0.5

0

0.5

1

1.5

u

u x

(b)
0 10 20 30 40

−2

−1

0

1

2

x

u
Figure 15: The first antisymmetric steady solutions of (135),L = 38.5 , ν = 1 . (a) u, ux projection in
the 3-d phase space of (139); (b) The profile of the same orbit on the interval [0, L];

5.3.4 Variational approach

Because we take the periodic boundary conditions u(x, t) = u(x+L, t), it is of great interest
to find dynamically important steady solutions with a given spatial period L. (144) may
be directly solved for the steady solution. But as we remarked previously, the number of
solutions increases rapidly with L, if L is not too small, there are quite many low-period
orbits and we have to classify them according to their importance as we believe that only a
few of them are closely related to the asymptotic dynamics of (133). Empirically, we know
that an equilibrium is important if a typical phase orbit passes its neighborhood frequently.
On a plane, through observation of the phase orbit we may quickly identify those important
equilibria. In high dimensional space, even if the steady solutions are found, it is not
straightforward to determine which ones are important.

Figure 14 shows a typical phase orbit of the KSe in the antisymmetric solution space with
periodic boundary conditions. It consists of three parts, the parts on sides communicating
with the part in the middle. We pick up any point on the typical orbit. It corresponds to a
antisymmetric loop in the phase space M of (139) and so can be used to initialize the search
for a periodic orbit in M. Using the technique developed in [156], we found several dozen
periodic orbits of (139) for L = 38.5 , ν = 1. Not all of them are antisymmetric and some of
them may not even be important. So we re-initialize the search by taking the average of an
orbit segment with the hope that the typical phase orbit will pass through the neighborhood
of important steady solutions often. In this way, the number of relevant steady solutions is
greatly reduced. There are around 10 solutions with 4 of them antisymmetric. We display
them in figure 15, figure 16, figure 17, and figure 18.
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Figure 16: The second antisymmetric steady solutions of (135),L = 38.5 , ν = 1 . (a) u, ux projection
in the 3-d phase space of (139); (b) The profile of the same orbit on the interval [0, L];
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Figure 17: The third antisymmetric steady solution of (135),L = 38.5 , ν = 1 . (a) u, ux projection in
the 3-d phase space of (139); (b) The profile of the same orbit on the interval [0, L];

The steady solutions in figure 15 and figure 16 live in the middle part while the ones in
figure 17 and figure 18 live on its sides. Close inspection reveals that they have different
topology relative to the equilibria on the u, ux projection plane of M. In figure 15 and
figure 16, the orbits circles circle the two stationary points as a whole and u has 4 peaks
on [0, L]. In figure 17 and figure 18, the orbits sometimes circle only one of the equilibria
and u has 6 peaks. Now, we may conclude that there is a qualitative difference between
the middle part and the side parts in figure 14. A typical orbit has 4 peaks in the middle
part and 6 peaks in the side parts. The communication between the middle and side parts
indicates transitions between these two states.

5.3.5 Other bounded solutions

Besides stationary points, heteroclinic connections and periodic orbits, there are other more
complicated invariant sets like invariant tori and chaotic trajectories. Interestingly, almost
all these solutions exhibit the characteristic cellular structure - the average distances be-
tween maxima or minima approximately equal a constant value close to 2

√
2π, the wave-

length of the most unstable mode.

The periodic orbits can be either elliptic or hyperbolic. When they are elliptic, the
Poincaré map associated with the periodic orbit is measure preserving and Moser’s twist
mapping theorem implies that, the flow defined by (139) possesses an infinite set of invariant
tori surrounding the periodic orbit [174]. When a periodic orbit is hyperbolic, there exists
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Figure 18: The fourth antisymmetric steady solutions of (135),L = 38.5 , ν = 1 . (a) u, ux projection
in the 3-d phase space of (139); (b) The profile of the same orbit on the interval [0, L];

Cantor-type set of chaotic solutions which weave between periodic ones. This can be double-
checked by constructing horseshoes from the connections.

5.4 Summary

In this chapter, we derived the KSe as a phase equation from the CGLe. Eq (133) is a
general phase equation in a space-time translationally invariant system when the system
crosses the long wavelength instability [152]. We discussed its basic property, in particular,
its inertial manifold. We also give a rather detailed account of its steady solutions. It turns
out that even the structure of steady solutions are rather complex. Lots of efforts have been
made to illucidate the spatial behavior of these solutions.

Steady solutions are important because they set up the coarsest frame for the typi-
cal phase space motion. According to their distribution and property, the phase space is
divided into qualitatively different parts. Each part has its own dynamics and there are
orbits commuting between different parts. In the next chapter, we will investigate all these
dynamics in detail and build a much more clear picture of the SIS.
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CHAPTER VI

SPATIOTEMPORAL DYNAMICS OF THE 1-D
KURAMOTO-SIVASHINSKY EQUATION

6.0.1 Bifurcation sequence

One fundamental problem in the dynamical systems approach to turbulence is that [47]: are
transitions to chaos true routes to turbulence? This is not obvious since usual dynamical
systems have only a few degrees of freedom with no spatial features, while systems described
by a PDE have infinitely many degrees of freedom with possibly intricate spatial structures.
The KSe provides the simplest example of a nonlinear PDE that exhibits extremely rich
dynamical behavior [133] and that can be tackled within the framework of dynamical system
theory.

For small system size L, the dynamics and bifurcation sequence are thoroughly inves-
tigated both numerically and analytically [132, 144, 6, 124]. When L < 2π

√
ν, the origin

is the global attractor, with no interesting spatial structure. With L passing 2π
√

ν, a su-
percritical bifurcation generates a stationary attractor with one spatial hump . Due to the
spatial translation invariance of the KSe, there exists a continous family of such solutions
with different phases. The next bifurcation produces stable travelling wave attractor. The
consecutive one stabilize the heteroclinic cycles where solutions “burst” intermittently: they
stay quite long as a quasi-steady wave and then switch rapidly to a translated quasi-steady
state and continue to repeat this process indefinitely. A new bifurcation follows with hete-
roclinic cycles replaced by stationary two-hump stable equilibria. (Later on stable equilibria
with n humps are observed with energy concentrating on the nth Fourier modes. A class of
such steady attractive solutions are analyzed by Frisch et. al [91] and called cellular solu-
tion as they exhibit the so-called viscoelastic behavior under long-wave perturbations.) The
next two bifurcations again give travelling waves and heteroclinic cycles, one after another.
Then, chaos mounts on the stage with the two-cellular and three-cellular states competing
with each other. Armbruster et. al showed that four complex modes are enough to produce
all the basic features of the system for a considerably large range of system sizes [6]. But
for the full spatiotemporal chaos, we need more modes.

6.0.2 Spatiotemporal chaos and recurrence patterns

J. Hyman and B. Nicolaenko [133] went on to explore dynamics on larger intervals and
found that regular and chaotic regions appear alternatively. Intermittency and metastable
states are observed for various parameter ranges. For the system size sufficiently large,
strange equilibria appear which contain broad spectra of Fourier modes. These equilibrium
points bring spatial complexity to the solution and are believed to play an important role
in the formation of eventual large-scale spatiotemporal chaos. These points correspond to
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periodic solutions on the chaotic sets of the ODE for steady solutions of the KSe and were
identified by Michelson [175].

Locally coherent structures are frequently observed even in the fully spatiotemporal
chaotic regime. The aforementioned cellular structures are the most commonly encountered
ones. They are a well-defined entity, moving only slightly chaoticly, interacting weakly with
each other except at some discrete space-time points where they are annihilated or created,
leaving almost constant local cell densities. We can take a portion of the profile of u(x, t)
and after small modification of the boundary parts extend it periodically to the whole real
axis to get a new profile. For a considerable amount of time, the evolution of these two
profiles agrees fairly well, especially in the central part [58, 124]. These observations show
that the full chaotic system consists of almost constant number of spatially localized cells
or subsystems. They look rather similar and have few internal degrees of freedom which
are controllable. They communicate with each other weakly and mainly through their
boundaries.

From a dynamical system point of view, the coherent structures with short periods live
and are stable in some invariant subspaces of the full phase space. In the spatiotermporal
chaos regime, the modes in the orthogonal (infinite-dimensinal) space provide perturba-
tions which drag solutions out of those subspaces and make them chaotic. If the resulted
solutions are still close to the subspaces, they will bear many structural resemblance to
the originally stable patterns with chaoticity caused by the weak interaction between them.
The whole pattern forms out of instabilities of different levels and the chaotic dynamics
just exhibits their competition and mutual saturation. In the periodic orbit theory, the
most important recurrent patterns are captured by the shortest UPOs, which encode the
coarsest structure of the attractor in the phase space and contain the most unstable di-
rections in their unstable manifolds. Longer cycles resolve more detailed structures and
thus more subtle instabilities. This direction was first pursued by Christiansen et. al [36].
Using Newton-Raphson method, they located several hundred UPOs in the anti-symmetric
space of the KSe with periodic boudary condition at the onset of spatiotemporal chaos, and
accordingly established symbolic dynamics. Thus the structure of the strange attractor was
clearly displayed and the physical averages are computable via trace formula.

6.1 Proposed study

We will now extend this exploration to the full solution space of the KSe with possibly
more complex attracting sets. We will study the spatiotemporal chaotic dynamics from two
aspects: locally and globally. The global investigation includes finding UPOs, establishing
symbolic dynamics, constructing intrinsic coordinate on the SIS and identifying the most
important instabilities. The local study will construct a class of models based on the cellular
structures of the KSe and the concept of inertial manifold. Roughly, the strong correlations
in short distances will be built into the equation while the long distance correlations will
be modeled by the interaction between cells. Next, the geometrical constraints that depict
the inertial manifold will be used to refine our models.
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6.1.1 Periodic orbit investigations

In our preliminary investigations, we encountered the difficulty of detecting UPOs in a
high-dimensional system with chaotic dynamics. Motivated by this challenge, we developed
a new variational method for finding UPOs in general flows (see chapter 3). If some coarse
picture of the dynamics is available, we may put into the phase space a rough guess in form
of a loop represented by a set of points, and our variational method will drive it toward
a real periodic orbit. So far, the method appears to be stable and efficient for handling
spatiotemporally chaotic dynamics. It has been applied to the KSe with periodic boundary
condition in the search of antisymmetric cycles at ν = 0.01500, and we have succeeded in
finding some of the shortest orbits [156].

I propose to carry out all the detailed steps to analyze the structure of the SIS and the
spatiotemporal dynamics on them in the medium turbulent regime [133].

6.1.1.1 Qualitative dynamics and Fourier modes

It is always wise to develop a qualitative picture of the system dynamics before attempting
an indepth investigation. Bifurcation sequences studied by Nikolaenko et al indicates that
complex chaotic behavior sets in at ν = 0.01580, and that it persists for small ν [133]. Our
preliminary results show that as ν decreased, more and more stationary solutions appear,
and that the chaotic attractor grows bigger and more complicated. 2-tori are generated
through Hopf bifurcation of periodic orbits but higher-dimensional tori seem unlikely to
occur, which is consistent with the claim made by Ruelle and Takens [216]. The local
unstable manifolds of shortest periodic orbits found so far never achieve a dimension higher
than two. This seems to contradict with the linear growth of the fractal dimension of the
SIS with the system sizes [243]. We will investigate this apparent contradiction in detail.
On the other hand, among the over 100 equilibria which we found in the phase space, only
the least unstable ones seem to be relevant to the chaotic dynamics. There might exist
UPOs with many unstable directions [278], but they do not participate in the asymptotic
dynamics. We will check this out.

How many Fourier modes we should keep is a serious problem. The optimal choice is
using the least number of them to capture the interesting dynamics to the precision we
want. For numerical computation, this is actually all we can do, since what we observe on
the computer is always some coarsed version of the true dynamics. From a mathematical
point of view, we often have relatively small number of active modes, and the rest are either
slaved to the active ones or can be viewed as small perturbations. The structural stability
of short UPOs will guarantee the faithfulness of our numerical calculation. The coarsening
procedure will be checked and the qualitative features of the dynamics will be defined in
terms of properties of UPOs.

6.1.1.2 Periodic orbits and symbolic dynamics

After we have gained confidence in our accuracy in Gälekin truncations, and developed a
qualitative picture of the high-dimensional flow, we shall apply our variational method. The
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the shortest cycles we shall initialize the search with the qualitative knowledge we have, or
start the evolution from UPOs found at bigger ν’s.

After we have some UPOs, we may calculate the eigenvalues and the expanding eigen-
vector of the Jacobian. One or more Poincaré section can be chosen such that it intersects
the UPOs transversely. Mark the UPOs as well as the unstable directions on the Poincaré
section and try to visualize the image of the SIS. With more UPOs, the image would be-
come more clear. Curvilinear coordinates are then established along unstable manifolds of
periodic points on the Poincaré section. After very coarse maps are established on these
coordinates, we may construct the symbolic dynamics and then use it to guess the location
of other UPOs [36]. More UPOs that are found can in turn be used to get more accurate
symbolic dynamics. I plan to procceed in this iterative way, finding more and more UPOs,
down to the machine precision. One important observation is that the line approximation
to the SIS is valid as long as the SIS is quasi-one dimensional. More general, we may need
topological methods [181] to establish the symbolic dynamics as discussed above in Chapter
3.

6.1.1.3 Phase space structure and dynamical averages

Though symbolic dynamics usually give good enough description of the phase dynamics on
the SIS, we would like to obtain more information about the generating mechanism, the
organization, the possible changes of the SIS. It is then very helpful to know other invariant
objects in the phase space. Stationary points are the simplest among them. Each one of
them is an isolated island around which the flow is near linear and characterized by the
center point. They communicate with each other or with other invariant set along stable
and unstable manifolds. So the stationary points impose the roughest organization of the
phase space dynamics. It is good to know around which stationary point a UPO or one
portion of a UPO circulates.

Our strategy to determine the correspondence between the UPOs and stationary points
will be to implement numerically the homotopy evolution driven by our variational method.
We have now two phase spaces: the full phase space M1 that has Fourier components as
its axis and the four-dimensional phase space M2 of the ODEs that describe the steady
solutions for the KSe. Stationary points in M1 correspond to periodic orbits in M2. Pick
any point on a UPO in M1. It represents a periodic spatial profile (note the periodic
boundary condition) on the interval [0, L] and can be represented by a loop in M2. We
evolve this loop toward a periodic orbit in M2 by our variational method. The corresponding
equilibrium in M1 is the center for the original UPO segment. In this way, we can locate
in M1 those equilibria which are the important in organizing the dynamics.

After a substantial set of UPOs has been found, we may use trace formula to calculate
the dynamical averages like correlation functions, average energy, Lyapunov exponents,
fractal dimensions of the SIS. If the symbolic representation is obtained, the topological
entropy or K-entropy can also be estimated. Through the study of the organization of the
UPOs by the stationary points, typical as well as the special dynamical behavior will be
checked and explained. On the other hand, we may transform the dynamics back onto the
real axis and study various transport properties.
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6.1.2 Local model investigation

Another part of the plan will be an attempt to describe the dynamics from a local interaction
perspective. As mention in sect. 6.0.2, in the spatiotemporal chaotic regime of the KSe,
a large number of well-defined local cellular states interacting with each other provides a
quite suggestive picture of the structure of dynamics over large spatial intervals. This point
of view suggests that we may partition the large interval into smaller ones and study more
controllable dynamics on each subinterval. The dynamics on the full interval is restored
by introducing interactions between the small systems on the subintervals. Two problems
naturally arise: how to partition the interval and how to introduce the interactions.

There are two requirements for the partition. First, the subinterval should be big enough
to accomodate the local coherent structure with fairly well-defined local dynamics. Second,
the subinterval should be small enough such that the dynamics inside it is simple enough
to be in our control. The interaction should be local and capture the dynamics predicted
by the original PDE. For a comparison of the dynamics on the full interval with that on
the subinterval, it is good if the interaction only distorts weakly the equations of motion on
the subinterval. The following can be done on the KSe:

• The subinterval can be conveniently chosen to contain some integer number of cellular
structures. The local interaction is introduced by combining the equations of motion
of neighboring cells. How many cells chosen in a subinterval and how to combine these
and derive the approximate equations is an open problem, essential to implementing
this approach.

• After the partition and interaction are chosen, we obtain a new dynamical system
with a greatly reduced dimension compared to the Gälerkin truncation of the original
PDE. This model is supposed to reproduce its dynamics qualitatively; we have to
check and validate this claim. Second, we may compare the dynamics on one cell with
interaction to that without so as to determine the effects of the interaction to the
cell dynamics and thus how well the cellular structure constitute the spatiotemporal
chaos.

• If we succeed in the above two steps, we may vary the size of the interval and check two
things. First, for some intermediate intervals, the competition between the dominant
modes and the impact of this competition to the global dynamics will be investigated
by the cell dynamics. Typical periodic orbits will be found to interprete this competi-
tion. Second, we may check dynamics on large intervals. The physical averages based
on the cell dynamics will be calculated and compared to the values given in [133].

6.1.3 Averaged patterns

For turbulence in an infinite domain, any long-time average is uniform in space. In exper-
iments, the boundary of the container breaks this, for example, the wall area is different
from the central area. The boundaris impose geometrical constraints and the long-time av-
erage of appropriate physical quantities can have nontrivial spatial structure. This kind of
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boundary effects were observed both in experiments and in numerical calculations [278, 79].
As short periodic orbits dominate the dynamics, we hope to interpret this phenomenon from
structures of the UPOs as well as from the interaction between the cell and the boundary.
As the short orbits are robust under small parameter variations, it is convenient for us
to trace the change of the stucture when the boundary conditions varies. From the point
of view of local models, as the boundary effects to cells is quite simple, the nature of the
averaged structure will be quite clear.
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CHAPTER VII

SUMMARY

Dynamical systems and turbulence have been a focus of research for centuries. Various
approaches: numerical, analytical, algebraic, geometrical, statistical, topological, scaling,
field theoretic, etc., have been developed, and the advantagous stategy should combine all
these methods. In a sense, periodic orbit theory is a strong candidate. It has been applied
to many low-dimensional chaotic systems with a remarkable success. We are committed to
generalizing this theory to study of spatiotemporal chaos (turbulence) in spatially extended
systems. As a modest first step, here we have studied two 1−d PDEs on a compact domain
with the periodic condition: the CGLe and the KSe.

The CGLe differs from the KSe in that it describes two interacting scalar fields while
the KSe only depicts one. In the chaotic regime of the CGLe, topological defects appear
and vanish at discrete space-time points, but the field in the KSe is always smooth. As the
KSe can be derived as a phase equation from the CGLe [22], we may check the relationship
of their dynamics and get a better understanding of both.

In the CGLe, we have investigated the onset of spatiotemporal chaos from a bifurcation
point of view. Near the bifurcation point, the dynamics is regular or weakly chaotic, so
analytical treatment is possible. We have also checked the role played by the invariant
structures and tried to find their dynamical explanations. This system is an illumination of
the idea that finitely many recurrent patterns may make up the key building blocks of the
spatiotemporal chaos.

In the KSe, the structure of the SIS and the chaotic dynamics on it are explored using the
periodic orbit approach. After checking the qualitative aspects of the dynamics, a complete
set of UPOs up to some length is found and approximate symbolic dynamics established
at the same time. Here, a variational method devised for high-dimensional unstable flows
is applied for finding UPOs. Stationary points are found and their relation to the set
of UPOs is studied, from which the qualitative structure of the phase space is dicussed.
Finally, dynamical averages are calculated and typical patterns are picked up, which may
be compared with the experimental or numerical observations.

The validity and applicability of the periodic orbit theory presupposes that the system is
hyperbolic, so our calculatons depend much on the hyperbolicity assumption. Most systems
in the interesting parameter regimes are not hyperbolic, and frequently intermittency plays
an essential role. In some systems, the SIS and intermittency coexist. How to treat all
these different cases and how to weigh different invariant sets in one dynamical system are
open problems, important, and demanding real effort. The periodic orbit theory is making
progress in this direction on ‘simple’ systems.
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In long run, the hope is that we can apply the periodic orbit theory to real-world prob-
lems, such as the Navier-Stokes equation under given boundary conditions, and use calcu-
lated results to match or predict experimental data, or to check and modify the assumptions
underlying specific turbulence models. More analytical tools for analyzing the invariant set
and UPOs and more powerful numerical methods for detecting UPOs are waiting to be
created, a task requiring a collaborative effort between people from many disciplines.
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APPENDIX A

REMARKS ON THE JACOBIANS FOR THE GENERAL FLOW

Let’s consider a general autonomous flow defined by the equation

d

dt
x(t) = f(x(t)) (149)

where x ∈ R
n and f(.) is a smooth vector function. This flow will give an orbit φ(t, x) to

each point x in the phase space,
φ : R × R

n �→ R
n

which satisfies φ(0, x) = x. For the invertible flow, φ(t, x) also satifies the full group
property,

φ(t2, φ(t1, x)) = φ(t2 + t1, x)

Actually, in this case, φ(t, x) forms a one-parameter family of transformations. The Jacobian
associated with an orbit is defined as

J t(x) =
∂

∂x
φ(t, x)

which describes the relative movement of the neighbouring points around the given orbit.
Following the group property of φ(t, x), if φ(t1, x̃) = x, then by chain rule,

J t1+t(x̃) = J t(x)J t1(x̃) (150)

It is not hard to check that the Jacobian J t satisfies the following equation,

d

dx
J t(x) = AJ t

where A(x) = ∂
∂xf(x) is the gradient of the velocity field. If we have a periodic orbit of

period T , then JT is called monodromy matrix whose eigenvalues are independent of the
starting point. Of course, the eigenvectors will be different for different starting points.
However, they could be related by the natural evolution along the flow. Suppose that along
the periodic orbit, there are two points x̃, x with φ(t1, x̃) = x. If �Λ is an eigenvector of
JT (x̃), i.e. JT (x̃)�Λ = λ�Λ, then J t1(x̃)�Λ is an eigenvector of JT (x) of the same eigenvalue
as shown below by repeated use of (150),

JT (x)(J t1(x̃)�Λ) = J t1(x̃)JT−t1(x)J t1(x̃)�Λ = J t1(x̃)(JT (x̃)�Λ) = λ(J t1(x̃)�Λ)

In practical calculations, Poincare sections are frequently utilized and the flow itself is
treated as a map on the Poincare section. Periodic orbits then become finite point sets
and the corresponding Jacobians depend not only on the position but also the orientation
of the Poincare section. The questions arise that whether the eigenvalues of the Jacobians
are invariant and how they are related to those of the flow. We will see in the following
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that the n − 1 eigenvalues of the map are the same as the corresponding ones of the flow,
independent of the choice of the Poincare section.

For simplicity, let’s assume that the Poincare section is defined by x1 = 0 and we have
found a periodic orbit with the starting point on the Poincare section. The Jacobian in
the full phase space is denoted by J = (J.1, · · · , J.n), where J.k is the kth column of the
Jacobian matrix. We denote it this way because it is the resulting point having evolved
for one period of the neighbouring point in the kth direction around the periodic point
on the Poincare section. Generally, J1k �= 0, which means that the final point is not on
the Poincare section. If we bring it back along the flow to the Poincare section, then the
corresponding Jacobian of the Poincare map will be constructed for the periodic orbit. The
back-flying time tk should satisfy tkv1 = J1k where v1 is the first component of the velocity
at the periodic point. Then tk = J1k/v1 and J̃.k = J.k − tk�v would be the corresponding
vector on the Poincare section. The Jacobian of the map could be written as

J̃ = (J̃.1, · · · , J̃.n) = J − �v�t (151)

where �t = col(t1, · · · , tn) and col(.) denotes the column vector. Now suppose that we have
an eigenvector �Λ of J , i.e. J�Λ = λ�Λ. We claim that Λ̃ = �Λ − tλ�v is an eigenvector of J̃ of
the same eigenvalue λ, where tλ = Λ1

v1
. In fact,

J̃Λ̃ = (J − �v�t)(�Λ − tλ�v)
= λ�Λ − tλ�v − �v(�t · �Λ) + tλ�v(�t · �v)
= λ�Λ − λtλ�v = λΛ̃

During the above calculation, we have used

�t · �Λ =
∑

i

tiΛi =
∑

i

J1i

v1
Λi = λ

Λ1

v1
= λtλ

�t · �v =
v1

v1
= 1

since J�Λ = λ�Λ, J�v = �v. Note that ṽ = �v − �v = 0, which will give the zero eigenvalue of J̃ .
In the full space, J̃ is still an n×n matrix with the first row filled with zeros. The reduced
(n − 1) × (n − 1) matrix which is a restraint of J̃ on the Poincare section is given just by
deleting the first row and column of J̃ .
For the whole discussion above to be valid, v1 �= 0 should always hold, i.e. the flow should
be transversal to the Poincare section. The reduced Jacobian is therefore the Jacobian in
the transversal direction, the invariance of whose eigenvalues justifies the use of the notation
JT in Chapter 7.
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APPENDIX B

COMPARISON OF NEWTON DESCENT WITH VARIATIONAL
PRINCIPLE IN HAMILTONIAN SYSTEM

Variational principle in Lagrangian mechanics is explained. Its usage in calculating periodic
orbits is discussed and compared with the Newton descent method in ref. [156].

B.1 Variational principle in Hamiltonian systems

Variational principle is a powerful tool in theoretical physics. In Hamiltonian mechanics, it
plays such a central role that much of the recent development of the subject is based on it,
analytically or numerically. The variational formulation of mechanics is also a convenient
bridge between classical mechanics and other branches of physics like statistical physics,
quantum physics.

Although the following formulation is valid for the most general case, for brevity, we just
consider a particle with unit mass (m = 1) moving in the 3-d space under the influence of
the external potential V (q, t). Newton’s second law tells us that the acceleration a(t) = d2q

d t2

is proportional to the external force f = −∂V
∂q , that is

a(t) = −∂V

∂q
. (152)

Eq.(152) describes the motion locally while variational principle gives a global view of
particle orbits. We can describe the dynamics in either the configuration (Lagrangian
formulation) or the phase space (Hamiltonian formulation). In configuration space, the
important physical quantity is the Lagrangian

L(q, q̇, t) = q̇2/2 − V (q, t) . (153)

The equation of motion is determined by requiring the variation of the action integral

S =
∫ t2

t1

dt L(q, q̇, t) (154)

to be dependent only on the surface terms [64].

In the most general case, the path varies in the configuration space with

q(t) → q′(t′) = q(t) + δq(t) , t → t′(t) = t + δt(t) . (155)
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These equations define the variation δq and δt in terms of the original variables: q and t.
The time change induces a change in the integration measure in (154) by

δ(dt) = d(t + δt) − dt = dt
d

dt
δt(t) .

In many applications, the time is not varied and we use δ0 instead of δ to indicate this
variation, i.e. δ0t = 0. The variation of q(t) is then to the highest order given by

δq(t) = q′(t + δt) − q(t) = q′(t) − q(t) + δt
dq′(t)

dt
:= δ0q(t) + δt

dq(t)
dt

.

Similarly,

δq̇(t) = δ0q̇(t) + δt
d

dt
q̇ =

d

dt
(δq) − q̇

d

dt
δt .

So, the variation of the action S is

δS =
∫ t2

t1

L δ(dt) + δL dt

=
∫ t2

t1

dt L
d

dt
δt +

(
∂L

∂q
δq +

∂L

∂q̇
δq̇ +

∂L

∂t
δt

)

=
∫ t2

t1

dt
d

dt
(Lδt +

∂L

∂q̇
δq − q̇

∂L

∂q̇
δt) +

∫ t2

t1

dt

[
∂L

∂q
− d

dt
(
∂L

∂q̇
)
]

δq +
[
∂L

∂t
+

d

dt
(q̇

∂L

∂q̇
− L)

]
δt . (156)

As usual, we may define the conjugate momentum p := ∂L
∂q̇ ; and the Hamiltonian H =

q̇ ∂L
∂q̇ −L . According to our variational principle, the variation of the action with respect to

a classical orbit only comes from the surface term,

δS = (p δq − H δt)|t2t1 ,

so the rest term in (156) should be identically zero. The variations δq give the equation

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 . (157)

This is the famous Euler-Lagrangian equation and is able to produce the equation of motion
in terms of the generalized coordinates. It is easy to see that if q is a cyclic coordinate (absent
from L), the conjugate momentum p is a conserved quantity. The variations δt give the
equation

dH

dt
= −∂L

∂t
. (158)

If the potential V is independent of time, then dH
dt = 0, i.e., H = E is a constant. In

other words, if time t is treated as a coordinate and is cyclic, Hamiltonian H would be the
corresponding conjugate momentum and is conserved. In fact, (158) can be directly derived
from (157) since we have the identity

∂L

∂t
+

d

dt

(
q̇
∂L

∂q̇
− L

)
= −

[
∂L

∂q
− d

dt
(
∂L

∂q̇
)
]

q̇ .
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With this observation, up to the surface term, δS depends only on δ0q. The variation δt in
time can well be contained in the position variation δq, which leaves some arbitrariness in
the time parametrization of the loop as long as numerical calculation is concerned. For the
same reson, the only equation that the particle trajectory has to satisfy is (157), the right
hand side of which is the gradient of S with respect to δq (or δ0q).

B.2 Newton descent and variational principle

If we are seeking a periodic orbit of known period T , we may set δt = 0, and the variational
principle in this case reads

δS =
∫ t2

t1

dt

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δ0q = 0 . (159)

So, the periodic orbit is a critical point (minimum, maximum or saddle) of the action
functional. If the periodic orbit is an extremum (minimum or maximum), gradient-descent
method [205, 50, 80] could be used. The more general way is to solve directly the zero
gradient condition (157). Go back to the simple case and assume that v does not contain
time explicitly, i.e., L(q, q̇) = 1

2 q̇2 − v(q). The q gradient of S is then

g(q) := f(q) − q̈ = a − ã , (160)

where a := f(q) and ã := q̈ make the notations consistent with those in [156]. We would like
to find zeros of (160) in the loop space {q(t) : q(t) = q(t+T ), t ∈ [0, T ]}. Different approaches
can be applied at this point. In view of the periodic boundary condition, Helleman and
Bountis [119] derived the gradient g(q̂) in Fourier space and use Newton’s method to locate
its zeros.

In the more complicated case, Newton descent is a efficient method for finding zeros
of g(q). Let’s review the Newton descent method in the Hamiltonian case. Our starting
equation is

∂

∂τ
(ã − λ2a) = −(ã − λ2a) . (161)

As the period T is known by assumption it is convenient to set λ = 1. Then (161) is
equivalent to

∂

∂τ
g(q) = −g(q) , (162)

or more explicitly,
δg(q)
δq

· ∂q

∂τ
= −g(q) . (163)

This is just the infinitesimal version of Newton’s method. As we make the loop deformation
continuous, we call it Newton descent. Therefore basically, Newton descent is a variant
of Newton’s method for locating zeros of the stationary variation condition g(q) = 0. In
practice, we can choose to work in the configuration q-space or in the Fourier q̂-space. In
q-space numerical calculation, the large matrix derived from the left hand side of (163) is
sparse, which is easier for inversion, especially in high-dimensional space. When we work
in q̂-space, much fewer modes are sufficient to capture the essential shape of the periodic
orbit if it is ’simple’ (high frequency components are highly supressed).
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Solve (163) for δ0q and the corresponding variation in S is given by

δS = −
∫ t2

t1

dt g(q)
(

δg

δq

)−1

(q)g(q) δτ . (164)

If the loop q(t) is close to a periodic orbit, we can check where δS heads. Near a minimum
(maximum), all the eigenvalues of δg

δq being positive (negative), δS is therefore decreasing
(increasing) to make S approach its minimum (maximum) value. Near a saddle, situation
becomes more complicated: δS could be positive or negative. But (162) ensures that g(q)
always approaches zero and thus q(t) evolves toward a periodic orbit.

In chapter 3, we introduced the following cost functional

F 2[x̃] =
1
2π

∮
L(τ)

ds (ṽ(x̃) − λv(x̃))2 . (165)

The Newton descent flow always decreases F 2 and every solution of (157) minimizes F 2.
However, F 2 is not equivalent to the action integral S in the Lagrangian mechanics, because
there may be local minima (maxima, saddle) of (165) that are not solutions to (157). So,
stationary variation condition δF 2 = 0 may not yield solutions that are physical while
δS = 0 always does. At a critical point S assumes any value while F 2 can only take value
0 in order to identify a true solution of the original equation. The Newton descent (162)
directly searches zeros of g(q), which is better than ordinary minimization of F 2 (see chapter
9 of [205]).

B.3 Conclusion

From the above comparison, we see that the basic equation of Lagrangian mechanics can
be derived from the variational principle. The principle is also applicable analytically or
numerically to determining periodic orbits, when the desired orbit is an extremum of the
action integral. If the periodic orbit appears as a saddle which is the case in many instances,
we cannot apply the principle directly. In practice, various versions of Newton’s method
are used to locate zeros of the gradient of the action. The Newton descent is one variant of
Newton’s method among others.
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APPENDIX C

THEOREMS USED IN THE PROOFS

We use successive approximation method to prove the existence of modulated amplitude
waves. Below are listed several theorems from the theory of nonlinear oscillations taken
from Hale’s monograph [112].

Consider the system of equations

ż = Az + εZ(τ, z, ε) (166)

where A is a constant matrix, ε, τ ∈ R, and z, Z ∈ R
n. Z is a continuous function of τ, z, ε,

periodic in τ of period T . In the following, we only consider the case that Z is a smooth
function. Without loss of generality, A can always be assumed to have the standard form

A = diag(0p, B),

Where 0p is a p × p zero matrix and B is a constant matrix with the property that the
equation ẏ = By has no nontrivial periodic solution of period T . Under these settings, if
the successive approximation is applied to (166), we have

Theorem C.0.1 Given d > b > 0, there is an ε1 > 0 such that for any given constant p
vector a, ‖a‖ < b and real ε, |ε| < ε1, there is a unique function

z∗(τ) = z(τ, a, ε),with sup
τ
‖z∗(τ)‖ < d

which has continuous first derivative with respect to τ and satisfies

ż∗ = Az∗ + εZ(τ, z∗, ε) − εP0Z(τ, z∗, ε).

Furthermore, z(τ, a, 0) = a∗, a∗ = col(a, 0), P0(z∗) = a∗, and z(τ, a, ε) has continuous first
derivatives with respect to a, ε.

P0 is defined as a projection operator on the Banach space S of continuous periodic functions
of period T. If f ∈ S, write f = col(g, h) where g is a p vector and h is a n− p vector, then

P0(f) = col
(

T−1

∫ T

0
g(t) dt, 0

)

So, P0 brings an element f in S to a constant vector which has the average values of g
over one period as the first p components and zeros as the rest components. The equation
satisfied by z∗ is different from (166) by a constant vector. By a proper choice of the starting
vector a, we may make this constant vector zero to obtain a solution for the system (166).
The mathematical statement is give by the following theorem.
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Theorem C.0.2 Let z(τ, a, ε) be the function given by the Theorem C.0.1 for all ‖a‖ ≤
b < d, |ε| ≤ ε1. If there exist an ε2 ≤ ε1 and a continuous function a(ε) such that

P0Z(τ, z(τ, a(ε), ε), ε) = 0, with ‖a(ε)‖ ≤ b for |ε| ≤ ε2 (167)

then z(τ, a(ε), ε) is a periodic solution of system (166) for ‖ε‖ ≤ ε2. Conversely, if system
(166) has a periodic solution z̄(τ, ε), of period T , ‖z̄(τ, ε)‖ ≤ d, |ε| ≤ ε2, then z̄(τ, ε) =
z(τ, a(ε), ε).

Therefore, the existence of a continuous function a(ε) satisfying (167) is a necessary and
sufficient condition for the existence of a periodic solution of system (166) of period T .
As we do not know the exact functional form of the periodic solution, the condition (167)
could not be solved explicitly. But by using implicit function theorem, we can show that the
substitution into (167) of a proper approximate function of z(τ, a, ε) leads to the existence
condition for periodic solutions.

Theorem C.0.3 In the system (166), let

Z = col(X, Y ), z = col(x, y)

where X, x are p vectors and define

X0(x, y, ε) =
1
T

∫ T

0
X(τ, x, y, ε)dτ.

If there is a p vector a0, ‖a0‖ < d, such that

X0(a0, 0, 0) = 0, det
[
∂X0(a0, 0, 0)

∂x

]
�= 0 (168)

then there exists an ε1 > 0 and a periodic function z(τ, ε), |ε| ≤ ε1, of system (166) of period
T with z(τ, 0) = col(a0, 0).

If we need to determine other parameters as a function of ε in practical applications,
similar theorems could be derived. Specifically, in the main text we consider the period T
as a function of ε. It is clear that theorem C.0.3 applies if we suppose T (ε) is continuous
in ε and bounded for |ε| ≤ ε1. Furthermore, despite the use of the zeroth approximation in
the above theorem, the nth approximation could be used instead. If simple (non-vanishing
determinant) solutions to the determining equations can be found for ε in the neighborhood
of 0 then system (166) has a periodic solution.

If the system which we are studying possesses certain symmetries, we can prove the
existence of particular symmetric solutions by a simplified version of determining equations.
Let us define the symmetry first.

Definition C.0.1 Let ż = f(τ, z), where z, f ∈ R
n, be a system of differential equations.

It is said to have the property E with respect to Q if there exists a nonsingular matrix Q
such that

Q2 = I Qf(−τ, Qz) = −f(τ, z) QP0 = P0Q

where P0 is the projection operator defined before.
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Under this symmetry assumption the following theorems apply:

Theorem C.0.4 Suppose Q = diag(Q1, Q2) where Q1 is a p × p matrix. If system (166)
has property E with respect to this Q for all ε. If a, ‖a‖ ≤ b, is a p vector and a∗ = col(a, 0)
is a n vector, chosen in such a way that Qa∗ = a∗, then the solution z(τ, a, ε) satisfies the
relation

Qz(−τ, a, ε) = z(τ, a, ε)

and consequently,
Z(−τ, z(−τ, a, ε), ε) = −Qz(τ, z(τ, a, ε), ε)

Theorem C.0.5 If the j-th element of the diagonal of the matrix Q1 in Theorem C.0.4 is
+1, then the j-th equation in the determining equations is equal to zero for every vector a∗

in Theorem C.0.4.

The system (94) derived here from the 1-D CGLe has this symmetry, so the number of
determining equations can be reduced using these two theorems.
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[59] Daviaud, F., Lega, J., Bergé, P., Coullet, P., and Dubois, M., “Spatio-
temporal intermittency in a 1d convective pattern: theoretical model and experi-
ments,” Physica D, vol. 55, pp. 287–308, 1992.

[60] Davidchack, R. L. and Lai, Y.-C., “Efficient algorithm for detecting unstable
periodic orbits in chaotic systems,” Phys. Rev. E, vol. 60, p. 6172, 1999.
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